Three-Dimensional Time-Resolved Flow Field in the First and Last Turbine Stage of a Heavy Duty Gas Turbine: Part I — Secondary Flow Field
暂无分享,去创建一个
Unsteady stator-rotor interaction in gas turbines has been investigated both experimentally and numerically for some years now. Even though the numerical methods are still in development, today they have reached a certain degree of maturity allowing industry to focus on the results of the computations and their impact on turbine design, rather than on a further improvement of the methods themselves. The key to increase efficiency in modern gas turbines is a better understanding and subsequent optimization of the loss-generation mechanisms. A major part of these are the secondary losses. To this end, this paper presents the time-resolved secondary flow field for the two test cases computed, viz the first and the last turbine stage of a modern heavy duty gas turbine. A companion paper referring to the same computations focuses on the unsteady pressure fluctuations on vanes and blades. The investigations have been performed with the flow solver ITSM3D which allows for efficient calculations that simulate the real blade count ratio. This is a prerequisite to simulate the unsteady phenomena in frequency and amplitude properly.Copyright © 2000 by ASME