Condensation of a supersaturated vapor. XII. The homogeneous nucleation of the n‐alkanes

The critical supersaturations required for the homogeneous nucleation of the normal alkanes, n‐hexane, n‐heptane, n‐octane, and n‐nonane, from their vapor have been measured in the temperature range 225–330°K using an upward thermal diffusion cloud chamber. The principles of operation of the chamber, its design, and construction are described in detail. The measurements are found to be in remarkably good agreement with the predictions of the classical (Volmer, Becker–Doering) theory. The Reiss–Katz–Cohen theory predictions are 8%–20% too low; the Lothe–Pound theory predictions are 30%–70% too low; for both theories the discrepancy increases with decreasing temperature.

[1]  H. Wakeshima,et al.  Growth of Droplets and Condensation Coefficients of Some Liquids , 1963 .

[2]  R. Becker,et al.  Kinetische Behandlung der Keimbildung in übersättigten Dämpfen , 1935 .

[3]  B. Paul Compilation of Evaporation Coefficients , 1962 .

[4]  J. Kassner,et al.  The nucleation of water vapor in the absence of particulate matter and ions , 1969 .

[5]  E. R. Cohen,et al.  Translation-Rotation Paradox in the Theory of Nucleation , 1968 .

[6]  J. Frankel Kinetic theory of liquids , 1946 .

[7]  J. Katz,et al.  Nucleation in associated vapors , 1966 .

[8]  Edward A. Mason,et al.  Thermal Conductivity of Multicomponent Gas Mixtures. II , 1958 .

[9]  J. Giddings,et al.  Diffusion of halogenated hydrocarbons in helium. The effect of structure on collision cross sections , 1969 .

[10]  J. Giddings,et al.  NEW METHOD FOR PREDICTION OF BINARY GAS-PHASE DIFFUSION COEFFICIENTS , 1966 .

[11]  J. Franck,et al.  Messung der kritischen Übersättigung von Dämpfen mit der Diffusionsnebelkammer , 1956 .

[12]  J. Kassner,et al.  Homogeneous Nucleation Measurements of Water Vapor in Helium , 1966 .

[13]  Max Volmer,et al.  Kinetik der Phasenbildung , 1939 .

[14]  T. L. Ibbs,et al.  Thermal Diffusion in Gases , 1952 .

[15]  E. V. Kring,et al.  The Isobaric Surface Tensions and Thermodynamic Properties of the Surfaces of a Series of n-Alkanes, C5 to C18, 1-Alkenes, C6 to C16, and of n-Decylcyclopentane, n-Decylcyclohexane and n-Dcylbenzene. , 1955 .

[16]  C. T. O'konski,et al.  A test of the becker-doering theory of nucleation kinetics☆☆☆ , 1960 .

[17]  S. Friedlander,et al.  Vapor condensation in the mixing zone of a jet , 1964 .

[18]  F. Kuhrt Das Tröpfchenmodell realer Gase , 1952 .

[19]  E. Kerr,et al.  The Orthobaric Surface Tensions and Thermodynamic Properties of the Liquid Surfaces of the n—Alkanes, C5 to C28 , 1953 .

[20]  B. J. Ostermier,et al.  Diffusion Cloud‐Chamber Investigation of Homogeneous Nucleation , 1967 .

[21]  J. Lothe,et al.  RECONSIDERATIONS OF NUCLEATION THEORY , 1962 .

[22]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[23]  Howard Reiss,et al.  The Kinetics of Phase Transitions in Binary Systems , 1950 .

[24]  C. F. Curtiss,et al.  Molecular Theory Of Gases And Liquids , 1954 .

[25]  G. Stein,et al.  Experiments on the Number of Particles Formed by Homogeneous Nucleation in the Vapor Phase , 1967 .

[26]  P. G. Hill,et al.  Nucleation of Supersaturated Vapors in Nozzles. II. C6H6, CHCl3, CCl3F, and C2H5OH , 1969 .

[27]  M. Volkenstein,et al.  Statistical mechanics of chain molecules , 1969 .

[28]  C. T. R. Wilson Condensation of Water Vapour in the Presence of Dust-Free Air and Other Gases , 1897 .

[29]  A. Langsdorf A Continuously Sensitive Diffusion Cloud Chamber , 1939 .