Molecular evolutionary analyses of mariners and other transposable elements in fire ants (Hymenoptera: Formicidae)

Screens of a library of genomic DNA made during a recent study of the fire ant Solenopsis invicta revealed the presence of three distinct types of transposable elements (TEs). Two of the recovered sequences showed a high similarity to long‐terminal repeat (LTR) retrotransposons, while the third showed a high homology to mariner elements. To investigate the distribution and relationships of mariners in related ants, we PCR‐amplified these elements from additional Solenopsis species. Phylogenetic analyses showed that they form a single group within the mauritiana subfamily that is part of a larger clade derived from hymenopteran species. We also present partial sequence data for the two LTR‐retrotransposons and describe their phylogenetic affinities.

[1]  D. Hartl,et al.  Horizontal transmission versus ancient origin:Mariner in the witness box , 2005, Genetica.

[2]  M. P. Cummings PHYLIP (Phylogeny Inference Package) , 2004 .

[3]  R. Britten,et al.  Gypsy/Ty3-class retrotransposons integrated in the DNA of herring, tunicate, and echinoderms , 2004, Journal of Molecular Evolution.

[4]  E. Galun Transposable Elements , 2003, Springer Netherlands.

[5]  H. Robertson,et al.  The mariner Transposons of Animals: Horizontally Jumping Genes , 2002 .

[6]  H. Robertson Evolution of DNA Transposons in Eukaryotes , 2002 .

[7]  K. Ross,et al.  Identification of a Major Gene Regulating Complex Social Behavior , 2001, Science.

[8]  Z. Tu,et al.  Expanding the diversity of the IS630-Tc1-mariner superfamily: discovery of a unique DD37E transposon and reclassification of the DD37D and DD39D transposons. , 2001, Genetics.

[9]  T. Eickbush,et al.  Phylogenetic analysis of ribonuclease H domains suggests a late, chimeric origin of LTR retrotransposable elements and retroviruses. , 2001, Genome research.

[10]  H. Robertson,et al.  Loss of transposase-DNA interaction may underlie the divergence of mariner family transposable elements and the ability of more than one mariner to occupy the same genome. , 2001, Molecular biology and evolution.

[11]  N. Pollet,et al.  Features of the mammal mar1 transposons in the human, sheep, cow, and mouse genomes and implications for their evolution , 2000, Mammalian Genome.

[12]  A. Bird,et al.  Sequence analysis of transposable elements in the sea squirt, Ciona intestinalis. , 2000, Molecular biology and evolution.

[13]  M. G. Kidwell,et al.  Transposable elements and host genome evolution. , 2000, Trends in ecology & evolution.

[14]  R. Plasterk,et al.  Resident aliens: the Tc1/mariner superfamily of transposable elements. , 1999, Trends in genetics : TIG.

[15]  M. Labrador,et al.  The retrotransposon Osvaldo from Drosophila buzzatii displays all structural features of a functional retrovirus. , 1999, Molecular biology and evolution.

[16]  P. Abad,et al.  A Mariner-Like Transposable Element in the Insect Parasite Nematode Heterorhabditis bacteriophora , 1999, Journal of Molecular Evolution.

[17]  P. Capy,et al.  Characterization and Evolution of mariner Elements from Closely Related Species of Fruit Flies (Diptera: Tephritidae) , 1998, Journal of Molecular Evolution.

[18]  Thomas L. Madden,et al.  Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. , 1997, Nucleic acids research.

[19]  H. Robertson,et al.  Multiple Mariner transposons in flatworms and hydras are related to those of insects. , 1997, The Journal of heredity.

[20]  K. Morikawa,et al.  Proposal for new catalytic roles for two invariant residues in Escherichia coli ribonuclease HI. , 1996, Protein engineering.

[21]  M. Churchill,et al.  A purified mariner transposase is sufficient to mediate transposition in vitro , 1996, The EMBO journal.

[22]  H. Robertson,et al.  Bmmar1: a basal lineage of the mariner family of transposable elements in the silkworm moth, Bombyx mori. , 1996, Insect biochemistry and molecular biology.

[23]  Y. Bigot,et al.  Human and other mammalian genomes contain transposons of the mariner family , 1995, FEBS letters.

[24]  H. Robertson The Tcl-mariner superfamily of transposons in animals , 1995 .

[25]  Ronald H. A. Plasterk,et al.  The mechanism of transposition of Tc3 in C. elegans , 1994, Cell.

[26]  P. Capy,et al.  Mariner-like elements in hymenopteran species: insertion site and distribution. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  T. Doak,et al.  A proposed superfamily of transposase genes: transposon-like elements in ciliated protozoa and a common "D35E" motif. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[28]  T. Doak A proposed superfamily of transposase-related genes: new members in transposon-like elements of ciliated protozoa and a common "D35E" motif , 1994 .

[29]  H. Robertson,et al.  Five major subfamilies of mariner transposable elements in insects, including the Mediterranean fruit fly, and related arthropods , 1993, Insect molecular biology.

[30]  Hugh M. Robertson,et al.  The mariner transposable element is widespread in insects , 1993, Nature.

[31]  T. Eickbush,et al.  Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: A mechanism for non-LTR retrotransposition , 1993, Cell.

[32]  J. Trager A revision of the fire ants, Solenopsis geminata group (Hymenoptera: Formicidae, Myrmicinae). , 1991 .

[33]  D. Hartl,et al.  Molecular and functional analysis of the mariner mutator element Mos1 in Drosophila. , 1991, Genetics.

[34]  D. Hartl,et al.  Evolution of the transposable element mariner in Drosophila species. , 1991, Genetics.

[35]  D. Matthews,et al.  Crystal structure of the ribonuclease H domain of HIV-1 reverse transcriptase. , 1991, Science.

[36]  M. Nissen,et al.  Gene organization and transcription of TED, a lepidopteran retrotransposon integrated within the baculovirus genome , 1990, Molecular and cellular biology.

[37]  D. Hartl,et al.  Genetic applications of an inverse polymerase chain reaction. , 1988, Genetics.

[38]  D. Hartl,et al.  Molecular structure of a somatically unstable transposable element in Drosophila. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[39]  C. Carlisle,et al.  The crystal structure of ribonuclease. I , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.