Computing with an algebraic-perturbation variant of Barvinok's algorithm
暂无分享,去创建一个
[1] László Lovász,et al. The Generalized Basis Reduction Algorithm , 1990, Math. Oper. Res..
[2] Alexander Barvinok,et al. Integer Points in Polyhedra , 2008 .
[3] M. Brion. Points entiers dans les polyèdres convexes , 1988 .
[4] Arnold Schönhage. Factorization of Univariate Integer Polynomials by Diophantine Aproximation and an Improved Basis Reduction Algorithm , 1984, ICALP.
[5] Matthias Ko¨ppe. A Primal Barvinok Algorithm Based on Irrational Decompositions , 2007 .
[6] A. Barvinok,et al. An Algorithmic Theory of Lattice Points in Polyhedra , 1999 .
[7] Michele Vergne,et al. Residue formulae for vector partitions and Euler-MacLaurin sums , 2003, Adv. Appl. Math..
[8] Jesús A. De Loera,et al. Algebraic and Geometric Ideas in the Theory of Discrete Optimization , 2012, MOS-SIAM Series on Optimization.
[9] Fu Liu. Perturbation of central transportation polytopes of order kn × n , 2012 .
[10] Matthias Köppe,et al. Computing Parametric Rational Generating Functions with a Primal Barvinok Algorithm , 2008, Electron. J. Comb..
[11] Jon Lee,et al. An algebraic-perturbation variant of Barvinok's algorithm , 2015, Electron. Notes Discret. Math..
[12] Fu Liu. Perturbation of transportation polytopes , 2013, J. Comb. Theory, Ser. A.
[13] Phong Q. Nguyen,et al. The LLL Algorithm - Survey and Applications , 2009, Information Security and Cryptography.
[14] Antonio José Durán Guardeño,et al. The Misfortunes of a Trio of Mathematicians Using Computer Algebra Systems. Can We Trust in Them , 2014 .
[15] John F. Canny,et al. A General Approach to Removing Degeneracies , 1995, SIAM J. Comput..
[16] Matthias Köppe,et al. A Primal Barvinok Algorithm Based on Irrational Decompositions , 2006, SIAM J. Discret. Math..
[18] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[19] A. Storjohann. Faster algorithms for integer lattice basis reduction , 1996 .
[20] Alexander I. Barvinok,et al. A polynomial time algorithm for counting integral points in polyhedra when the dimension is fixed , 1993, Proceedings of 1993 IEEE 34th Annual Foundations of Computer Science.
[21] R. Yoshida,et al. A generating function for all semi-magic squares and the volume of the Birkhoff polytope , 2009 .
[22] Jesús A. De Loera,et al. Effective lattice point counting in rational convex polytopes , 2004, J. Symb. Comput..
[23] Martin E. Dyer,et al. On Barvinok's Algorithm for Counting Lattice Points in Fixed Dimension , 1997, Math. Oper. Res..