Quantum automorphism groups of homogeneous graphs

Associated to a finite graph X is its quantum automorphism group G. The main problem is to compute the Poincare series of G, meaning the series f(z)=1+c1z+c2z2+⋯ whose coefficients are multiplicities of 1 into tensor powers of the fundamental representation. In this paper we find a duality between certain quantum groups and planar algebras, which leads to a planar algebra formulation of the problem. Together with some other results, this gives f for all homogeneous graphs having 8 vertices or less.

[1]  Marc A. Rieffel,et al.  Morita equivalence for c∗-algebras and w∗-algebras , 1974 .

[2]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[3]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[4]  The Annular Structure of Subfactors , 2001, math/0105071.

[5]  A. Sloan The polaron without cutoffs in two space dimensions , 1974 .

[6]  A. Connes,et al.  Gravity coupled with matter and the foundation of non-commutative geometry , 1996, hep-th/9603053.

[7]  Hani J. Doss,et al.  Liens entre equations di erentielles stochastiques et ordinaires , 1977 .

[8]  B. Curtin Some planar algebras related to graphs , 2003 .

[9]  M. Freidlin Functional Integration And Partial Differential Equations , 1985 .

[10]  S. Woronowicz,et al.  Compact matrix pseudogroups , 1987 .

[11]  C. Bezuidenhout Singular Perturbations of Degenerate Diffusions , 1987 .

[12]  V. Sunder,et al.  The planar algebra associated to a Kac algebra , 2003 .

[13]  S. Popa Supported by Federal Ministry of Science and Research, AustriaAN AXIOMATIZATION OF THE LATTICE OF HIGHER RELATIVE COMMUTANTS OF A SUBFACTOR , 2001 .

[14]  S. Vaes Strictly Outer Actions of Groups and Quantum Groups , 2002, math/0211272.

[15]  John E. Roberts,et al.  A new duality theory for compact groups , 1989 .

[16]  Vaughan F. R. Jones Planar algebras , 2021, New Zealand Journal of Mathematics.

[17]  V. Jones The Planar Algebra of a bipartite graph , 2000 .

[18]  Free Wreath Product by the Quantum Permutation Group , 2001, math/0107029.

[19]  Vaughan F. R. Jones,et al.  Algebras associated to intermediate subfactors , 1997 .

[20]  Philippe Biane,et al.  Representations of Symmetric Groups and Free Probability , 1998 .

[21]  H. Doss Quelques formules asymptotiques pour les petites perturbations de systèmes dynamiques , 1980 .

[22]  D. Voiculescu Addition of certain non-commuting random variables , 1986 .

[23]  B. Magajna Strong Operator Modules and the Haagerup Tensor Product , 1997 .

[24]  B. Magajna The minimal operator module of a Banach module , 1999, Proceedings of the Edinburgh Mathematical Society.

[25]  D. W. Stroock,et al.  Nouveaux résultats concernant les petites perturbations de systèmes dynamiques , 1991 .

[26]  Zeph Landau Exchange Relation Planar Algebras , 2002 .

[27]  J. W. Humberston Classical mechanics , 1980, Nature.

[28]  Quantum automorphism groups of small metric spaces , 2003, math/0304025.

[29]  H. Doss Un nouveau principe de grandes déviations en théorie du filtrage non linéaire , 1991 .

[30]  V. Paulsen Completely Bounded Maps and Operator Algebras: Contents , 2003 .

[31]  M. Takesaki,et al.  Analyticity and the Unruh effect: a study of local modular flow , 2024, Journal of High Energy Physics.

[32]  A theory of dimension , 1996, funct-an/9604008.

[33]  S. Varadhan,et al.  On the Support of Diffusion Processes with Applications to the Strong Maximum Principle , 1972 .

[34]  Operator algebras and conformal field theory III. Fusion of positive energy representations of LSU(N) using bounded operators , 1998, math/9806031.

[35]  W. L. Paschke Inner Product Modules Over B ∗ -Algebras , 1973 .

[36]  V. Sunder,et al.  On biunitary permutation matrices and some subfactors of index 9 , 1996 .

[37]  W. Fleming,et al.  Controlled Markov processes and viscosity solutions , 1992 .

[38]  V. Jones,et al.  Singly generated planar algebras of small dimension , 2000 .

[39]  B. Bhattacharyya Group actions on graphs related to Krishnan-Sunder subfactors , 2002 .

[40]  T. Banica Representations of compact quantum groups and subfactors , 1998, math/9804015.

[41]  Piotr Sniady,et al.  Free probability and representations of large symmetric groups , 2003, math/0304275.

[42]  Michel L. Lapidus,et al.  The Feynman Integral and Feynman's Operational Calculus , 2000 .

[43]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[44]  S. Woronowicz,et al.  Tannaka-Krein duality for compact matrix pseudogroups. TwistedSU(N) groups , 1988 .

[45]  S. Popa Classification of amenable subfactors of type II , 1994 .

[46]  Shuzhou Wang,et al.  Quantum Symmetry Groups of Finite Spaces , 1998, math/9807091.

[47]  Julien Bichon,et al.  Quantum automorphism groups of finite graphs , 1999, math/9902029.

[48]  S. Stratila,et al.  Modular Theory in Operator Algebras , 1981 .

[49]  Halim Doss Sur une Resolution Stochastique de l'Equation de Schrödinger à Coefficients Analytiques , 1980 .

[50]  C. L. Merdy,et al.  An operator space characterization of dual operator algebras , 1999 .

[51]  D. Robert Autour de l'approximation semi-classique , 1987 .