Ultrasensitive photoacoustic detection in a high-finesse cavity with Pound-Drever-Hall locking.

We demonstrate an ultrasensitive photoacoustic sensor using a low laser power (4 mW) and high-finesse (>9000) optical cavity. The Pound-Drever-Hall (PDH) method is adopted to lock the external cavity diode laser at 1531.58 nm to the Fabry-Pérot cavity. By placing a photoacoustic cell inside the 130-mm-long optical cavity, we obtain an enhancement of more than 630 times in laser power for acetylene (C2H2) detection. The present photoacoustic spectroscopy (PAS) sensor achieves a normalized noise equivalent absorption coefficient of 1.1×10-11  cm-1 WHz-1/2, which is unprecedented sensitivity among all the current PAS sensors. Our results demonstrate the feasibility of merging PAS with a high-finesse cavity using PDH locking for ultrasensitive trace gas detection.

[1]  Frank K. Tittel,et al.  Ppb-level H2S detection for SF6 decomposition based on a fiber-amplified telecommunication diode laser and a background-gas-induced high-Q photoacoustic cell , 2017 .

[2]  T. L. Myers,et al.  Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared. , 2004, Spectrochimica Acta Part A - Molecular and Biomolecular Spectroscopy.

[3]  Frank K. Tittel,et al.  Quartz-Enhanced Photoacoustic Spectroscopy: A Review , 2014, Sensors.

[4]  Lauri Halonen,et al.  Sub-parts-per-trillion level sensitivity in trace gas detection by cantilever-enhanced photo-acoustic spectroscopy , 2018, Scientific Reports.

[5]  John L. Hall,et al.  Laser phase and frequency stabilization using an optical resonator , 1983 .

[6]  M. Sigrist Trace gas monitoring by laser photoacoustic spectroscopy and related techniques (plenary) , 2003 .

[7]  Xian Zhao,et al.  Photoacoustic trace detection of gases at the parts-per-quadrillion level with a moving optical grating , 2017, Proceedings of the National Academy of Sciences.

[8]  Frank K. Tittel,et al.  Ultra-high sensitive acetylene detection using quartz-enhanced photoacoustic spectroscopy with a fiber amplified diode laser and a 30.72 kHz quartz tuning fork , 2017 .

[9]  Jyrki Kauppinen,et al.  Optimization of a Microphone for Photoacoustic Spectroscopy , 2003, Applied spectroscopy.

[10]  G. Scamarcio,et al.  Part-per-trillion level SF6 detection using a quartz enhanced photoacoustic spectroscopy-based sensor with single-mode fiber-coupled quantum cascade laser excitation. , 2012, Optics letters.

[11]  Simone Borri,et al.  Intracavity quartz-enhanced photoacoustic sensor , 2014 .

[12]  Salvatore Iannotta,et al.  Optical enhancement of diode laser-photoacoustic trace gas detection by means of external Fabry-Perot cavity , 2005 .

[13]  A. Kosterev,et al.  Quartz-enhanced photoacoustic spectroscopy. , 2002, Optics letters.

[14]  A. Miklós,et al.  Application of acoustic resonators in photoacoustic trace gas analysis and metrology , 2001 .

[15]  E. Black An introduction to Pound–Drever–Hall laser frequency stabilization , 2001 .

[16]  S. Borri,et al.  Observing the intrinsic linewidth of a quantum-cascade laser: beyond the Schawlow-Townes limit. , 2009, Physical review letters.

[17]  Jari Peltola,et al.  Parts-per-trillion-level detection of nitrogen dioxide by cantilever-enhanced photo-acoustic spectroscopy. , 2015, Optics letters.

[18]  Naota Akikusa,et al.  Spectroscopic detection of radiocarbon dioxide at parts-per-quadrillion sensitivity , 2016, 2016 Conference on Lasers and Electro-Optics (CLEO).

[19]  V. Koskinen,et al.  Diode laser-based photoacoustic spectroscopy with interferometrically-enhanced cantilever detection: erratum. , 2006, Optics express.

[20]  Azer P Yalin,et al.  Cavity-enhanced rotational Raman scattering in gases using a 20  mW near-infrared fiber laser. , 2016, Optics letters.

[21]  Ke Chen,et al.  Ultra-high sensitive fiber-optic Fabry-Perot cantilever enhanced resonant photoacoustic spectroscopy , 2018, Sensors and Actuators B: Chemical.

[22]  A. Foltynowicz,et al.  Noise-immune cavity-enhanced optical heterodyne molecular spectroscopy: Current status and future potential , 2008 .