Pentaatomic planar tetracoordinate silicon with 14 valence electrons: A large‐scale global search of SiXnYmq (n + m = 4; q = 0, ±1, −2; X, Y = main group elements from H to Br)

Designing and characterizing the compounds with exotic structures and bonding that seemingly contrast the traditional chemical rules are a never‐ending goal. Although the silicon chemistry is dominated by the tetrahedral picture, many examples with the planar tetracoordinate‐Si skeletons have been discovered, among which simple species usually contain the 17/18 valence electrons. In this work, we report hitherto the most extensive structural search for the pentaatomic ptSi with 14 valence electrons, that is, SiXnYmq (n + m = 4; q = 0, ±1, −2; X, Y = main group elements from H to Br). For 129 studied systems, 50 systems have the ptSi structure as the local minimum. Promisingly, nine systems, that is, Li3SiAs2− , HSiY3 (Y = Al/Ga), Ca3SiAl−, Mg4Si2−, C2LiSi, Si3Y2 (Y = Li/Na/K), each have the global minimum ptSi. The former six systems represent the first prediction. Interestingly, in HSiY3 (Y = Al/Ga), the H‐atom is only bonded to the ptSi‐center via a localized 2c–2e σ bond. This sharply contradicts the known pentaatomic planar‐centered systems, in which the ligands are actively involved in the ligand–ligand bonding besides being bonded to the planar center. Therefore, we proposed here that to generalize the 14e‐ptSi, two strategies can be applied as (1) introducing the alkaline/alkaline‐earth elements and (2) breaking the peripheral bonding. In light of the very limited global ptSi examples, the presently designed six systems with 14e are expected to enrich the exotic ptSi chemistry and welcome future laboratory confirmation. © 2014 Wiley Periodicals, Inc.

[1]  Jing Xu,et al.  Computational design of intermolecularly stabilized cyclic compounds with low-valent phosphorus , 2014, Structural Chemistry.

[2]  Jing Xu,et al.  A Class of Computationally Designed Tri-Coordinate Cyclic Silylenes RSi(µ-R)2AlR2 , 2014 .

[3]  J. Facelli,et al.  Structure and electronic properties of lithium–silicon clusters , 2013 .

[4]  Yi‐hong Ding,et al.  Theoretical study of nitrogen-rich CN3− anion and related salts M+[CN3]− (M = Li, Na, K) , 2012 .

[5]  M. Kowal,et al.  Selected AB4(2-/-) (A = C, Si, Ge; B = Al, Ga, In) ions: a battle between covalency and aromaticity, and prediction of square planar Si in SiIn4(2-/-). , 2012, Physical chemistry chemical physics : PCCP.

[6]  Yi‐hong Ding,et al.  Structural and energetic exploration of a boron-rich sulfide cluster B6S , 2012 .

[7]  Kelling J. Donald,et al.  Structure and stability of the Si4Lin (n = 1–7) binary clusters , 2012 .

[8]  Jijun Zhao,et al.  Lowest-energy structures and electronic properties of Na-Si binary clusters from ab initio global search. , 2011, The Journal of chemical physics.

[9]  Yi‐hong Ding,et al.  Planar tetracoordinate carbon versus planar tetracoordinate boron: the case of CB4 and its cation. , 2011, Journal of the American Chemical Society.

[10]  Zhongfang Chen,et al.  SiC2 silagraphene and its one-dimensional derivatives: where planar tetracoordinate silicon happens. , 2011, Journal of the American Chemical Society.

[11]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[12]  Pekka Pyykkö,et al.  Molecular double-bond covalent radii for elements Li-E112. , 2009, Chemistry.

[13]  Jesus M. Ugalde,et al.  Designing 3-D molecular stars. , 2009, Journal of the American Chemical Society.

[14]  Y. Kawazoe,et al.  Stabilization of square planar silicon: a new building block for conjugated Si-containing systems. , 2009, The journal of physical chemistry. A.

[15]  M. Head‐Gordon,et al.  Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections. , 2008, Physical chemistry chemical physics : PCCP.

[16]  Wei Huang,et al.  Carbon avoids hypercoordination in CB6(-), CB6(2-), and C2B5(-) planar carbon-boron clusters. , 2008, Journal of the American Chemical Society.

[17]  D. Truhlar,et al.  The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals , 2008 .

[18]  Si‐Dian Li,et al.  Planar tetra-coordinate Si and Ge in perfectly squared Ni4Cl4X complexes , 2007 .

[19]  F. Rabilloud,et al.  Charge transfers in mixed silicon–alkali clusters and dipole moments , 2007 .

[20]  R. Keese,et al.  Carbon flatland: planar tetracoordinate carbon and fenestranes. , 2006, Chemical reviews.

[21]  A. Allouche,et al.  Theoretical study of mixed silicon-lithium clusters Si(n)Li(p)(+) (n=1-6, p=1-2). , 2006, The journal of physical chemistry. A.

[22]  P. Belanzoni,et al.  The Silicon Carbonyls Revisited: On the Existence of a Planar Si(CO)4 , 2006 .

[23]  G. Giorgi,et al.  Planar tetracoordinated silicon in silicon carbonyl complexes: a DFT approach. , 2006, The journal of physical chemistry. A.

[24]  R. M. Minyaev,et al.  Stabilization of Planar Four-Coordinate Boron, Carbon, and Silicon Atoms in Borane Clusters: A Quantum-Chemical Study , 2005 .

[25]  F. Weigend,et al.  Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. , 2005, Physical chemistry chemical physics : PCCP.

[26]  Si‐Dian Li,et al.  M5H5X (M = Ag, Au, Pd, Pt; X = Si, Ge, P, S): hydrometal pentagons with D5h planar pentacoordinate nonmetal centers. , 2005, The journal of physical chemistry. A.

[27]  Si‐Dian Li,et al.  C2h (BnEmSi)2H2 molecules (E = B, C, Si; n = 3-6; m = 1, 2) containing double planar tetra-, penta-, and hexacoordinate silicons. , 2005, The journal of physical chemistry. A.

[28]  Si‐Dian Li,et al.  Planar tetra-, penta-, hexa-, hepta-, and octacoordinate silicons: a universal structural pattern. , 2004, Journal of the American Chemical Society.

[29]  Si‐Dian Li,et al.  Hexacoordinate planar main group atoms centered in hexagonal hydrocopper complexes Cu6H6X (X = Si, P, As). , 2004, Inorganic chemistry.

[30]  Alexander I. Boldyrev,et al.  Electronic structure and chemical boning in nonstoichiometric molecules: Al3X2−(X=C,Si,Ge). A photoelectron spectroscopy and ab initio study , 2002 .

[31]  Lai‐Sheng Wang,et al.  Experimental Observation of Pentaatomic Tetracoordinate Planar Si‐ and Ge‐Containing Molecules: MAl4− and MAl4 , 2000 .

[32]  J. Simons,et al.  Experimental Observation of Pentaatomic Tetracoordinate Planar Carbon-Containing Molecules , 2000 .

[33]  J. Simons,et al.  Tetracoordinated Planar Carbon in the Al4C- Anion. A Combined Photoelectron Spectroscopy and ab Initio Study , 1999 .

[34]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[35]  Axel D. Becke,et al.  Density-functional thermochemistry. I. The effect of the exchange-only gradient correction , 1992 .

[36]  Michael J. Frisch,et al.  A direct MP2 gradient method , 1990 .

[37]  Michael J. Frisch,et al.  Semi-direct algorithms for the MP2 energy and gradient , 1990 .

[38]  U. Dettlaff-weglikowska,et al.  catena‐Poly[bis‐μ‐(o‐oxyphenyleneoxy)silicon]: Crystal Structure of the Orthosilicate of Catechol , 1989 .

[39]  G. Scuseria,et al.  Is coupled cluster singles and doubles (CCSD) more computationally intensive than quadratic configuration interaction (QCISD) , 1989 .

[40]  Michael J. Frisch,et al.  MP2 energy evaluation by direct methods , 1988 .

[41]  Curtis L. Janssen,et al.  An efficient reformulation of the closed‐shell coupled cluster single and double excitation (CCSD) equations , 1988 .

[42]  A. Osuka,et al.  Synthesis of naphthalene-bridged porphyrin dimers and their orientation-dependent exciton coupling , 1988 .

[43]  R. Bartlett,et al.  A full coupled‐cluster singles and doubles model: The inclusion of disconnected triples , 1982 .

[44]  J. Dunitz Planar Four‐Coordinated Silicon? , 1980 .

[45]  G. Nagorsen,et al.  Planar Four‐Coordinated Silicon—A Reply , 1980 .

[46]  P. Schleyer,et al.  Planar Tetracoordinate Silicon , 1979 .

[47]  G. Nagorsen,et al.  Structure and Reactivity of the Orthocarbonic and Orthosilicic Acid Esters of Pyrocatechol , 1979 .

[48]  R. Hoffmann The theoretical design of novel stabilized systems , 1971 .

[49]  Roald Hoffmann,et al.  Planar tetracoordinate carbon , 1970 .

[50]  R. Parr Density-functional theory of atoms and molecules , 1989 .

[51]  D. Schomburg Strong Distortion of the Tetrahedral Geometry in a Spirosilicate: Molecular Structure of Bis(tetramethylethylenedioxy)silane , 1983 .