Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement

In a 3D seismic survey, detecting seismic discontinuities is vital to robust structural and stratigraphic analysis in the subsurface. Previous methods have difficulty highlighting subtle discontinuities from seismic data in cases where the local amplitude variation is of non-zero mean. This study proposes implementing a gray-level transformation and the Canny edge detector for improved imaging of discontinuities. Specifically, the new process transforms seismic signals to be of zero mean and helps amplify subtle discontinuities, leading to an enhanced visualization for structural and stratigraphic details. Applications to various 3D seismic datasets demonstrate that the new algorithm helps better define channels, faults, and fractures than the traditional similarity, amplitude gradient, and semblance attributes. An improved algorithm for extracting 3D seismic discontinuity attribute.Gray-level transformation helps re-characterize subtle seismic features.Implementing Canny edge detector for efficient discontinuity detection.Integrating discontinuity magnitude and azimuth for fracture characterization.

[1]  Gijs C. Fehmers,et al.  Fast structural interpretation with structure-oriented filtering , 2002 .

[2]  G. Fehmers,et al.  Fast structural interpretation with structure-oriented filteringStructure-Oriented Filtering , 2003 .

[3]  Kurt J. Marfurt,et al.  Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping , 1999 .

[4]  R. Lynn Kirlin,et al.  3-D seismic attributes using a semblance‐based coherency algorithm , 1998 .

[5]  Michael S. Bahorich,et al.  3-D seismic discontinuity for faults and stratigraphic features; the coherence cube , 1995 .

[6]  Haibin Di,et al.  Gray-level transformation and Canny edge detection for 3D seismic discontinuity enhancement , 2014, Comput. Geosci..

[7]  Michael S. Bahorich,et al.  3-D Seismic Discontinuity For Faults And Stratigraphic Features: The Coherence Cube , 1995 .

[8]  Yi Luo,et al.  Generalized Hilbert transform and its applications in geophysics , 2003 .

[9]  Haibin Di,et al.  Multi-Attributes and Neural Network-Based Fault Detection in 3D Seismic Interpretation , 2013 .

[10]  Wenkai Lu,et al.  Higher-order-statistics and supertrace-based coherence-estimation algorithm , 2005 .

[11]  Kurt J. Marfurt,et al.  Eigenstructure Based Coherence Computations , 1996 .

[12]  Michael S. Bahorich,et al.  3-D Seismic Coherency And the Imaging of Sedimentological Features , 1995 .

[13]  Ronald R. Coifman,et al.  Local discontinuity measures for 3-D seismic data , 2002 .

[14]  Kurt J. Marfurt,et al.  Volumetric curvature attributes add value to 3D seismic data interpretation , 2007 .

[15]  Timothy R. Carr,et al.  Organic-rich Marcellus Shale lithofacies modeling and distribution pattern analysis in the Appalachian Basin , 2013 .

[16]  Kristofer M. Tingdahl,et al.  Semi‐automatic detection of faults in 3D seismic data , 2005 .

[17]  John F. Canny,et al.  A Computational Approach to Edge Detection , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  Lawrence G. Roberts,et al.  Machine Perception of Three-Dimensional Solids , 1963, Outstanding Dissertations in the Computer Sciences.

[19]  Bruce S. Hart,et al.  Outcrop and Seismic Analysis of Natural Fractures, Faults and Structure at Teapot Dome, Wyoming , 2003 .

[20]  Satinder Chopra,et al.  Coherence Cube and beyond , 2002 .

[21]  Dengliang Gao,et al.  Texture model regression for effective feature discrimination: Application to seismic facies visualization and interpretation , 2004 .

[22]  John C. Lorenz,et al.  Fracture and fault patterns associated with basement-cored anticlines: The example of Teapot Dome, Wyoming , 2006 .

[23]  Dengliang Gao,et al.  Latest developments in seismic texture analysis for subsurface structure, facies, and reservoir characterization: A review , 2011 .

[24]  Trygve Randen,et al.  Automatic 3D Fault Interpretation by Artificial Ants , 2002 .

[25]  Haibin Di,et al.  Predicting Fracture Orientations with Volumetric Curvature Gradient Analysis * , 2014 .

[26]  Wenkai Lu,et al.  Higher-order Statistics Based Coherency Estimation Algorithm , 2003 .

[27]  Kurt J. Marfurt,et al.  Coherency calculations in the presence of structural dip , 1999 .

[28]  P. Bakker,et al.  Image structure analysis for seismic interpretation , 2002 .

[29]  W. G. Higgs,et al.  Edge detection and stratigraphic analysis using 3D seismic data , 1996 .

[30]  M. Friedman,et al.  Reservoirs in Fractured Rock: Geologic Exploration Methods , 1972 .

[31]  Kurt J. Marfurt,et al.  Channel Detection Using Seismic Attributes On the Central Basin Platform, West Texas , 2003 .

[32]  R. Lynn Kirlin,et al.  3-D broad‐band estimates of reflector dip and amplitude , 2000 .

[33]  D. Gao Integrating 3D seismic curvature and curvature gradient attributes for fracture characterization: Methodologies and interpretational implications , 2013 .

[34]  John C. Lorenz,et al.  Lithologic and Structural Controls on Natural Fracture Characteristics Teapot Dome, Wyoming , 2001 .