Error estimates for the finite point method

In this paper, error estimates for the finite point method are presented in Sobolev spaces in multiple dimensions when nodes and shape functions satisfy certain conditions. From the error analysis of the finite point method, the error bound of the numerical solution is directly related to the radii of the weight functions and the condition number of the coefficient matrix.

[1]  Weimin Han,et al.  Error analysis of the reproducing kernel particle method , 2001 .

[2]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[3]  T. Liszka,et al.  hp-Meshless cloud method , 1996 .

[4]  Gang Li,et al.  Positivity conditions in meshless collocation methods , 2004 .

[5]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[6]  Li,et al.  Moving least-square reproducing kernel methods (I) Methodology and convergence , 1997 .

[7]  S. Atluri,et al.  A meshless local boundary integral equation (LBIE) method for solving nonlinear problems , 1998 .

[8]  N. Aluru A point collocation method based on reproducing kernel approximations , 2000 .

[9]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[10]  N. Aluru,et al.  Finite cloud method: a true meshless technique based on a fixed reproducing kernel approximation , 2001 .

[11]  S. Atluri,et al.  A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach , 1998 .

[12]  Eugenio Oñate,et al.  A finite point method for elasticity problems , 2001 .

[13]  Oden,et al.  An h-p adaptive method using clouds , 1996 .

[14]  Joseph J Monaghan,et al.  An introduction to SPH , 1987 .

[15]  N. Aluru,et al.  On the Equivalence Between Least-Squares and Kernel Approximations in Meshless Methods , 2001 .

[16]  Wing Kam Liu,et al.  Reproducing kernel particle methods for structural dynamics , 1995 .

[17]  T. Belytschko,et al.  Element‐free Galerkin methods , 1994 .

[18]  Cheng Yu-min,et al.  Boundary element-free method for elastodynamics , 2005 .

[19]  Guirong Liu,et al.  A point interpolation meshless method based on radial basis functions , 2002 .

[20]  Wing Kam Liu,et al.  Reproducing Kernel Particle Methods for large deformation analysis of non-linear structures , 1996 .

[21]  Carlos Zuppa,et al.  Error estimates for moving least square approximations , 2003 .

[22]  Gene H. Golub,et al.  Matrix computations , 1983 .

[23]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[24]  I. Babuska,et al.  The partition of unity finite element method: Basic theory and applications , 1996 .

[25]  J. Monaghan Why Particle Methods Work , 1982 .

[26]  Michael Griebel,et al.  Meshfree Methods for Partial Differential Equations , 2002 .

[27]  W. Chen,et al.  New RBF collocation methods and kernel RBF with applications , 2001, ArXiv.

[28]  Mark A Fleming,et al.  Meshless methods: An overview and recent developments , 1996 .

[29]  B. Nayroles,et al.  Generalizing the finite element method: Diffuse approximation and diffuse elements , 1992 .

[30]  K. M. Liew,et al.  A boundary element-free method (BEFM) for three-dimensional elasticity problems , 2005 .

[31]  E. Oñate,et al.  A FINITE POINT METHOD IN COMPUTATIONAL MECHANICS. APPLICATIONS TO CONVECTIVE TRANSPORT AND FLUID FLOW , 1996 .

[32]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[33]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[34]  Weimin Han,et al.  Reproducing kernel element method. Part I: Theoretical formulation , 2004 .

[35]  Jianming Zhang,et al.  A hybrid boundary node method , 2002 .