Reverse translocation of tRNA in the ribosome.

[1]  Eike Staub,et al.  The Highly Conserved LepA Is a Ribosomal Elongation Factor that Back-Translocates the Ribosome , 2006, Cell.

[2]  Divya Sharma,et al.  The hybrid state of tRNA binding is an authentic translation elongation intermediate , 2006, Nature Structural &Molecular Biology.

[3]  M. Rodnina,et al.  Control of phosphate release from elongation factor G by ribosomal protein L7/12 , 2005, The EMBO journal.

[4]  Sarah E. Walker,et al.  Destabilization of the P site codon-anticodon helix results from movement of tRNA into the P/E hybrid state within the ribosome. , 2005, Molecular cell.

[5]  V. Ramakrishnan,et al.  First published online as a Review in Advance on February 25, 2005 STRUCTURAL INSIGHTS INTO TRANSLATIONAL , 2022 .

[6]  O. Uhlenbeck,et al.  Uniform binding of aminoacylated transfer RNAs to the ribosomal A and P sites. , 2004, Molecular cell.

[7]  Wolfgang Wintermeyer,et al.  Conformational changes of the small ribosomal subunit during elongation factor G-dependent tRNA-mRNA translocation. , 2004, Journal of molecular biology.

[8]  M. Rodnina,et al.  Mechanisms of elongation on the ribosome: dynamics of a macromolecular machine. , 2004, Biochemical Society transactions.

[9]  Steven Chu,et al.  tRNA dynamics on the ribosome during translation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  O. Uhlenbeck,et al.  Contribution of the esterified amino acid to the binding of aminoacylated tRNAs to the ribosomal P- and A-sites. , 2004, Biochemistry.

[11]  Roxana Nechifor,et al.  Interactions of translational factor EF-G with the bacterial ribosome before and after mRNA translocation. , 2004, Journal of molecular biology.

[12]  M. Rodnina,et al.  Mechanism of tRNA Translocation on the Ribosome , 2001, Molecular Biology.

[13]  R. Green,et al.  EF-G-independent reactivity of a pre-translocation-state ribosome complex with the aminoacyl tRNA substrate puromycin supports an intermediate (hybrid) state of tRNA binding. , 2004, RNA.

[14]  Wolfgang Wintermeyer,et al.  An elongation factor G-induced ribosome rearrangement precedes tRNA-mRNA translocation. , 2003, Molecular cell.

[15]  H. Noller,et al.  Catalysis of Ribosomal Translocation by Sparsomycin , 2003, Science.

[16]  C. E. Caldon,et al.  Function of the universally conserved bacterial GTPases. , 2003, Current opinion in microbiology.

[17]  S. Joseph,et al.  Rapid kinetic analysis of EF-G-dependent mRNA translocation in the ribosome. , 2003, Journal of molecular biology.

[18]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[19]  M. Rodnina,et al.  Coupling of GTP hydrolysis by elongation factor G to translocation and factor recycling on the ribosome. , 2002, Biochemistry.

[20]  Thomas A Steitz,et al.  Structural insights into peptide bond formation , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[21]  H. Noller,et al.  Accurate translocation of mRNA by the ribosome requires a peptidyl group or its analog on the tRNA moving into the 30S P site. , 2002, Molecular cell.

[22]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[23]  S. Joseph,et al.  Conformational changes in the ribosome induced by translational miscoding agents. , 2000, Journal of molecular biology.

[24]  M. Rodnina,et al.  Energetic contribution of tRNA hybrid state formation to translocation catalysis on the ribosome , 2000, Nature Structural Biology.

[25]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[26]  M. Rodnina,et al.  Hydrolysis of GTP by elongation factor G drives tRNA movement on the ribosome , 1997, Nature.

[27]  M. Rodnina,et al.  The "allosteric three-site model" of elongation cannot be confirmed in a well-defined ribosome system from Escherichia coli. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Rodnina,et al.  Truncated elongation factor G lacking the G domain promotes translocation of the 3' end but not of the anticodon domain of peptidyl-tRNA. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[29]  M. Ehrenberg,et al.  Dissociation rates of peptidyl‐tRNA from the P‐site of E.coli ribosomes. , 1996, The EMBO journal.

[30]  M. Ehrenberg,et al.  Dissociation rate of cognate peptidyl-tRNA from the A-site of hyper-accurate and error-prone ribosomes. , 1994, European journal of biochemistry.

[31]  L. Bosch,et al.  Isolation and functional analysis of histidine-tagged elongation factor Tu. , 1992, European journal of biochemistry.

[32]  S. Kirillov,et al.  Puromycin reaction for the A site-bound peptidyl-tRNA. , 1992, FEBS letters.

[33]  H. Rheinberger The function of the translating ribosome: allosteric three-site model of elongation. , 1991, Biochimie.

[34]  G. Spedding Ribosomes and protein synthesis : a practical approach , 1990 .

[35]  L. Gold,et al.  Selection of the initiator tRNA by Escherichia coli initiation factors. , 1989, Genes & development.

[36]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[37]  A. Gnirke,et al.  The allosteric three-site model for the ribosomal elongation cycle. Analysis with a heteropolymeric mRNA. , 1989, The Journal of biological chemistry.

[38]  U. Geigenmüller,et al.  The allosteric three-site model for the ribosomal elongation cycle. New insights into the inhibition mechanisms of aminoglycosides, thiostrepton, and viomycin. , 1988, The Journal of biological chemistry.

[39]  Harry F. Noller,et al.  Interaction of antibiotics with functional sites in 16S ribosomal RNA , 1987, Nature.

[40]  W. Wintermeyer,et al.  Affinities of tRNA binding sites of ribosomes from Escherichia coli. , 1986, Biochemistry.

[41]  K. Nierhaus,et al.  Spontaneous, elongation factor G independent translocation of Escherichia coli ribosomes. , 1983, The Journal of biological chemistry.

[42]  T. Yamada,et al.  Resistance to viomycin conferred by RNA of either ribosomal subunit , 1978, Nature.

[43]  J. Modolell,et al.  Inhibition of ribosomal translocation by aminoglycoside antibiotics. , 1978, Biochemical and biophysical research communications.

[44]  A. Spirin Energetics of the ribosome. , 1978, Progress in nucleic acid research and molecular biology.

[45]  J. Modolell,et al.  The inhibition of ribosomal translocation by viomycin. , 1977, European journal of biochemistry.

[46]  A. Spirin,et al.  Stimulation of "non-enzymic" translocation in ribosomes by p-chloromercuribenzoate. , 1971, FEBS letters.

[47]  S. Pestka Studies on the formation of transfer ribonucleic acid-ribosome complexes. VI. Oligopeptide synthesis and translocation on ribosomes in the presence and absence of soluble transfer factors. , 1969, The Journal of biological chemistry.