Geospatial data streams: Formal framework and implementation

Abstract A spatio-temporal database manages spatio-temporal objects and supports corresponding query languages. Today, the term moving objects databases is used as a synonym for spatio-temporal databases managing spatial objects with a continuously changing geospatial location and/or extent. Recent advances in wireless communication, miniaturization of spatially enabled devices and global navigation satellite systems (GNSS) services have resulted in a large number of novel application domains. Applications in these novel domains (geo-sensor networks, moving objects tracking, real-time traffic analysis, etc.) process huge volumes of continuous data streams, i.e. data sets that are produced incrementally over time, rather than those available in full before the processing begins. Several data stream management systems (DSMSs) have been developed to manage this data. Since they are mainly based on a relational paradigm, they do not support geospatial data. Therefore, there is an urgent need for geospatial data stream management, ranging from real-time monitoring and alerting to long-term analysis of processed geospatial data. In this paper we present a formal framework consisting of data types and operations needed to support geospatial data in data streams. It can be used as a basis either for implementation of a completely new geospatial DSMS, or for extending available open source products and research prototypes. We leverage the work on abstract data types from spatio-temporal databases, present an implementation based on user-defined aggregate functions and illustrate embedding into an SQL-like language.

[1]  Kresimir Krizanovic,et al.  Data Types and Operations for Spatio-temporal Data Streams , 2011, 2011 IEEE 12th International Conference on Mobile Data Management.

[2]  Markus Schneider,et al.  A foundation for representing and querying moving objects , 2000, TODS.

[3]  Michael Stonebraker,et al.  Aurora: a new model and architecture for data stream management , 2003, The VLDB Journal.

[4]  Walid G. Aref,et al.  Exploiting predicate-window semantics over data streams , 2006, SGMD.

[5]  Walid G. Aref,et al.  Spatio-temporal Database , 2008, Encyclopedia of GIS.

[6]  Shashi Shekhar,et al.  Spatial Databases: A Tour , 2003 .

[7]  Carlo Zaniolo,et al.  Relational languages and data models for continuous queries on sequences and data streams , 2011, TODS.

[8]  Ralf Hartmut Güting,et al.  Abstract and discrete modeling of spatio-temporal data types , 1998, GIS '98.

[9]  Yao Zhao,et al.  An Extensibility Approach for Spatio-temporal Stream Processing Using Microsoft StreamInsight , 2011, SSTD.

[10]  Ralf Hartmut Güting,et al.  Moving Objects Databases , 2005 .

[11]  Timos K. Sellis,et al.  Managing Trajectories of Moving Objects as Data Streams , 2004, STDBM.

[12]  Ugur Demiryurek,et al.  Geospatial stream query processing using Microsoft SQL Server StreamInsight , 2010, Proc. VLDB Endow..

[13]  Ralf Hartmut Güting,et al.  A data model and data structures for moving objects databases , 2000, SIGMOD 2000.

[14]  Jennifer Widom,et al.  The CQL continuous query language: semantic foundations and query execution , 2006, The VLDB Journal.

[15]  Carlo Zaniolo,et al.  A data stream language and system designed for power and extensibility , 2006, CIKM '06.

[16]  Mark Ryan,et al.  Logic in Computer Science: Modelling and Reasoning about Systems , 2000 .

[17]  Badrish Chandramouli,et al.  The extensibility framework in Microsoft StreamInsight , 2011, 2011 IEEE 27th International Conference on Data Engineering.

[18]  Bo Xu,et al.  Moving objects databases: issues and solutions , 1998, Proceedings. Tenth International Conference on Scientific and Statistical Database Management (Cat. No.98TB100243).

[19]  Carlo Zaniolo,et al.  Query Languages and Data Models for Database Sequences and Data Streams , 2004, VLDB.

[20]  Carlo Zaniolo,et al.  Data models and query languages of spatio-temporal information (temporal database) , 2001 .

[21]  Lukasz Golab,et al.  Data Stream Management , 2017, Data Stream Management.

[22]  Timos K. Sellis,et al.  Monitoring continuous queries over streaming locations , 2008, GIS '08.

[23]  Jennifer Widom,et al.  STREAM: The Stanford Stream Data Manager , 2003, IEEE Data Eng. Bull..

[24]  Dino Pedreschi,et al.  Mobility, Data Mining and Privacy - Geographic Knowledge Discovery , 2008, Mobility, Data Mining and Privacy.

[25]  Michael J. Franklin,et al.  Continuous Analytics: Rethinking Query Processing in a Network-Effect World , 2009, CIDR.

[26]  Walid G. Aref,et al.  SOLE: scalable on-line execution of continuous queries on spatio-temporal data streams , 2008, The VLDB Journal.

[27]  Naphtali Rishe,et al.  Tracking Moving Objects Using Database Technology in DOMINO , 1999, NGITS.

[28]  Gloria Bordogna,et al.  Spatio-Temporal Databases: Flexible Querying and Reasoning , 2010 .

[29]  Ralf Hartmut Güting,et al.  Second-order signature , 1993, SIGMOD Conference.

[30]  Hui Ding,et al.  Efficient Maintenance of Continuous Queries for Trajectories , 2008, GeoInformatica.

[31]  Yan Huang,et al.  Querying geospatial data streams in SECONDO , 2009, GIS.

[32]  Xiaofeng Meng,et al.  Moving Objects Management: Models, Techniques and Applications , 2010 .

[33]  Frederick Reiss,et al.  TelegraphCQ: continuous dataflow processing , 2003, SIGMOD '03.

[34]  Walid G. Aref,et al.  Continuous Query Processing of Spatio-Temporal Data Streams in PLACE , 2005, GeoInformatica.

[35]  Nikos Pelekis,et al.  Boosting location-based services with a moving object database engine , 2006, MobiDE '06.

[36]  Jennifer Widom,et al.  Towards a streaming SQL standard , 2008, Proc. VLDB Endow..

[37]  Ralf Hartmut Güting,et al.  Querying Moving Objects in SECONDO , 2006, 7th International Conference on Mobile Data Management (MDM'06).

[38]  Michael Stonebraker,et al.  Monitoring Streams - A New Class of Data Management Applications , 2002, VLDB.

[39]  A. Prasad Sistla,et al.  Modeling and querying moving objects , 1997, Proceedings 13th International Conference on Data Engineering.

[40]  Badrish Chandramouli,et al.  Spatio-Temporal Stream Processing in Microsoft StreamInsight , 2010, IEEE Data Eng. Bull..

[41]  Hans-Dieter Ehrich,et al.  Specification of abstract data types , 1996 .

[42]  Yan Huang,et al.  New Data Types and Operations to Support Geo-streams , 2008, GIScience.

[43]  Kresimir Krizanovic,et al.  Spatio-temporal data streams: An approach to managing moving objects , 2010, The 33rd International Convention MIPRO.