The massive dark halo of the compact early-type galaxy NGC 1281

We investigate the compact, early-type galaxy NGC 1281 with integral field unit observations to map the stellar LOSVD out to 5 effective radii and construct orbit-based dynamical models to constrain its dark and luminous matter content. Under the assumption of mass-follows-light, the H-band stellar mass-to-light ratio (M/L) is {\Upsilon} = 2.7(+-0.1) {\Upsilon}_{sun}, higher than expected from our stellar population synthesis fits with either a canonical Kroupa ({\Upsilon} = 1.3 {\Upsilon}_{sun}) or Salpeter ({\Upsilon} = 1.7 {\Upsilon}_{sun}) stellar initial mass function. Such models also cannot reproduce the details of the LOSVD. Models with a dark halo recover the kinematics well and indicate that NGC 1281 is dark matter dominated, making up ~ 90 per cent of the total enclosed mass within the kinematic bounds. Parameterised as a spherical NFW profile, the dark halo mass is 11.5 < log(M_{DM}/M_{sun}) < 11.8 and the stellar M/L is 0.6 < {\Upsilon} < 1.1. However, this stellar M/L is lower than predicted by its old stellar population. Moreover, the halo mass within the kinematic extent is ten times larger than expected based on {\Lambda}CDM predictions, and an extrapolation yields cluster sized dark halo masses. Adopting {\Upsilon} = 1.7 {\Upsilon}_{sun} yields more moderate dark halo virial masses, but these models fit the kinematics worse. A non-NFW model might solve the discrepancy between the unphysical consequences of the best-fitting dynamical models and models based on more reasonable assumptions for the dark halo and stellar mass-to-light ratio, which are disfavoured according to our parameter estimation.

[1]  L. Hernquist,et al.  The diverse evolutionary paths of simulated high-z massive, compact galaxies to z = 0 , 2015, 1507.02291.

[2]  R. V. D. Bosch,et al.  MRK 1216 and NGC 1277 – an orbit-based dynamical analysis of compact, high-velocity dispersion galaxies , 2015, 1506.06762.

[3]  R. V. D. Bosch,et al.  THE BLACK HOLE IN THE COMPACT, HIGH-DISPERSION GALAXY NGC 1271 , 2015, 1506.05129.

[4]  Isaac Newton Group of Telescopes,et al.  MASSIVE RELIC GALAXIES CHALLENGE THE CO-EVOLUTION OF SUPER-MASSIVE BLACK HOLES AND THEIR HOST GALAXIES , 2015, 1506.02663.

[5]  I. Trujillo,et al.  The initial mass function of a massive relic galaxy , 2015, 1505.01485.

[6]  U. Austin,et al.  HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.

[7]  K. Alatalo,et al.  The ATLAS 3D project - XXIV. The intrinsic shape distribution of early-type galaxies , 2014, 1408.1099.

[8]  J. Falc'on-Barroso,et al.  Radial variations in the stellar initial mass function of early-type galaxies , 2014, 1404.6533.

[9]  S. Wuyts,et al.  DENSE CORES IN GALAXIES OUT TO z = 2.5 IN SDSS, UltraVISTA, AND THE FIVE 3D-HST/CANDELS FIELDS , 2014, 1404.4874.

[10]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[11]  A. Dutton,et al.  Cold dark matter haloes in the Planck era: evolution of structural parameters for Einasto and NFW profiles , 2014, 1402.7073.

[12]  Heidelberg,et al.  Bottom-heavy initial mass function in a nearby compact L★ galaxy , 2013, 1305.5542.

[13]  L. Koopmans,et al.  The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices , 2013, 1305.2873.

[14]  R. D. Carvalho,et al.  SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features , 2013, 1305.2273.

[15]  A. V. D. Wel,et al.  An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.

[16]  Michael J. Williams,et al.  MEASURING DARK MATTER PROFILES NON-PARAMETRICALLY IN DWARF SPHEROIDALS: AN APPLICATION TO DRACO , 2012, 1211.5376.

[17]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[18]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[19]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[20]  H. Rix,et al.  SHAPE EVOLUTION OF MASSIVE EARLY-TYPE GALAXIES: CONFIRMATION OF INCREASED DISK PREVALENCE AT z > 1 , 2012, 1211.2113.

[21]  P. Dokkum,et al.  MASSIVE AND NEWLY DEAD: DISCOVERY OF A SIGNIFICANT POPULATION OF GALAXIES WITH HIGH-VELOCITY DISPERSIONS AND STRONG BALMER LINES AT z ∼ 1.5 FROM DEEP KECK SPECTRA AND HST/WFC3 IMAGING , 2012, 1210.7236.

[22]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[23]  C. Sandin,et al.  PyCosmic: a robust method to detect cosmics in CALIFA and other fiber-fed integral-field spectroscopy datasets , 2012, 1208.1696.

[24]  Crescenzo Tortora,et al.  AN INVENTORY OF THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES , 2012, 1207.4475.

[25]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[26]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[27]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[28]  Heidelberg,et al.  Diagnostics of baryonic cooling in lensing galaxies , 2012, 1204.5749.

[29]  S. Toft,et al.  DEEP ABSORPTION LINE STUDIES OF QUIESCENT GALAXIES AT z ∼ 2: THE DYNAMICAL-MASS–SIZE RELATION AND FIRST CONSTRAINTS ON THE FUNDAMENTAL PLANE , 2012, 1204.3099.

[30]  L. Simard,et al.  Universal IMF versus dark halo response in early-type galaxies: breaking the degeneracy with the Fundamental Plane , 2012, 1204.2825.

[31]  Jeremy D. Murphy,et al.  DYNAMICAL MEASUREMENTS OF BLACK HOLE MASSES IN FOUR BRIGHTEST CLUSTER GALAXIES AT 100 Mpc , 2012, 1203.1620.

[32]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[33]  Marijn Franx,et al.  SIZES AND SURFACE BRIGHTNESS PROFILES OF QUIESCENT GALAXIES AT z ∼ 2 , 2011, 1111.3361.

[34]  L. Simard,et al.  Evidence for a non-universal stellar initial mass function in low-redshift high-density early-type galaxies , 2011, 1111.2905.

[35]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[36]  V. Cardone,et al.  Stellar mass-to-light ratio gradients in galaxies: correlations with mass , 2011, 1107.2918.

[37]  P. Groot,et al.  THE STELLAR VELOCITY DISPERSION OF A COMPACT MASSIVE GALAXY AT z = 1.80 USING X-SHOOTER: CONFIRMATION OF THE EVOLUTION IN THE MASS–SIZE AND MASS–DISPERSION RELATIONS, , 2011, 1104.3860.

[38]  M. Boylan-Kolchin,et al.  Too big to fail? The puzzling darkness of massive Milky Way subhaloes , 2011, 1103.0007.

[39]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[40]  Karl Gebhardt,et al.  GALAXY KINEMATICS WITH VIRUS-P: THE DARK MATTER HALO OF M87 , 2011, 1101.1957.

[41]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[42]  K. Viironen,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey: Early Report , 2010, 1012.3002.

[43]  Pieter G. van Dokkum,et al.  A substantial population of low-mass stars in luminous elliptical galaxies , 2010, Nature.

[44]  A. Bolton,et al.  DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING “LIGHT” INITIAL MASS FUNCTIONS , 2010, 1007.2409.

[45]  V. Cardone,et al.  Colour and stellar population gradients in galaxies: correlation with mass , 2010, Monthly Notices of the Royal Astronomical Society.

[46]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[47]  S. More,et al.  The kinematic connection between galaxies and dark matter haloes , 2010, 1004.4626.

[48]  S. More,et al.  Satellite kinematics – III. Halo masses of central galaxies in SDSS , 2010, 1003.3203.

[49]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[50]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[51]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[52]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[53]  Oxford,et al.  Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821 , 2009, 0906.0018.

[54]  Iap Paris,et al.  Resolved stellar mass maps of galaxies. I: method and implications for global mass estimates , 2009, 0904.4252.

[55]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[56]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[57]  Crescenzo Tortora,et al.  Central mass-to-light ratios and dark matter fractions in early-type galaxies , 2009, 0901.3781.

[58]  R. V. D. Bosch,et al.  Recovering the intrinsic shape of early‐type galaxies , 2008, 0811.3474.

[59]  K. Kuijken,et al.  Kinematic properties of early type galaxy halos using planetary nebulae , 2008, Proceedings of the International Astronomical Union.

[60]  Carlos S. Frenk,et al.  The diversity and similarity of simulated cold dark matter haloes , 2008, 0810.1522.

[61]  Joachim Stadel,et al.  Quantifying the heart of darkness with GHALO – a multibillion particle simulation of a galactic halo , 2008, 0808.2981.

[62]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[63]  P. S. Bunclark,et al.  Astronomical Data Analysis Software and Systems , 2008 .

[64]  T. Broadhurst,et al.  Comparison of Cluster Lensing Profiles with ΛCDM Predictions , 2008, 0805.2617.

[65]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[66]  A. Bolton,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE SLOAN LENS ACS SURVEY. VII. ELLIPTICAL GALAXY SCALING LAWS FROM DIRECT OBSERVATIONAL MASS MEASUREMENTS 1 , 2022 .

[67]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[68]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[69]  R. V. D. Bosch,et al.  Recovery of the internal orbital structure of galaxies , 2007, 0712.0309.

[70]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[71]  R. Bender,et al.  Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies , 2007, 0709.0691.

[72]  K. Kuijken,et al.  The PN.S Elliptical Galaxy Survey: Data Reduction, Planetary Nebula Catalog, and Basic Dynamics for NGC 3379 , 2007, astro-ph/0703047.

[73]  J. Rhodes,et al.  The Sloan Lens ACS Survey. IV. The Mass Density Profile of Early-Type Galaxies out to 100 Effective Radii , 2007, astro-ph/0701589.

[74]  J. Navarro,et al.  The shape of the gravitational potential in cold dark matter haloes , 2006, astro-ph/0612327.

[75]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[76]  Fabrizio Brighenti,et al.  The X-Ray Concentration-Virial Mass Relation , 2006, astro-ph/0610135.

[77]  KIPACStanford,et al.  The dark matter haloes of massive, relaxed galaxy clusters observed with Chandra , 2006, astro-ph/0610038.

[78]  A. Knebe,et al.  Triaxial versus Spherical Dark Matter Halo Profiles , 2006, Publications of the Astronomical Society of Australia.

[79]  I. McLean,et al.  Ground-based and Airborne Instrumentation for Astronomy , 2006 .

[80]  A. McConnachie,et al.  On the Formation of Extended Galactic Disks by Tidally Disrupted Dwarf Galaxies , 2006, astro-ph/0606101.

[81]  Edward J. Wollack,et al.  Wilkinson Microwave Anisotropy Probe (WMAP) Three Year Results: Implications for Cosmology , 2006, astro-ph/0603449.

[82]  J. Bullock,et al.  A Chandra View of Dark Matter in Early-Type Galaxies , 2006, astro-ph/0601301.

[83]  M. Verheijen,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2005, astro-ph/0512557.

[84]  R. V. D. Bosch,et al.  The Dynamical Mass-to-Light Ratio Profile and Distance of the Globular Cluster M15 , 2005, astro-ph/0512503.

[85]  J. Brinkmann,et al.  Galaxy halo masses and satellite fractions from galaxy–galaxy lensing in the Sloan Digital Sky Survey: stellar mass, luminosity, morphology and environment dependencies , 2005, astro-ph/0511164.

[86]  R. Sharples,et al.  Gemini/GMOS spectra of globular clusters in the Leo group elliptical NGC 3379 , 2005, astro-ph/0510838.

[87]  B. Moore,et al.  Empirical Models for Dark Matter Halos. I. Nonparametric Construction of Density Profiles and Comparison with Parametric Models , 2005, astro-ph/0509417.

[88]  C. Jones,et al.  ERRATUM: “CHANDRA SAMPLE OF NEARBY RELAXED GALAXY CLUSTERS: MASS, GAS FRACTION, AND MASS–TEMPERATURE RELATION” (2006, ApJ, 640, 691) , 2005, astro-ph/0507092.

[89]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[90]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[91]  Leiden,et al.  Distant Red Galaxies in the Hubble Ultra Deep Field , 2005, astro-ph/0503454.

[92]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[93]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[94]  M. Arnaud,et al.  The structural and scaling properties of nearby galaxy clusters. I. The universal mass profile , 2005, astro-ph/0501635.

[95]  R. Bouwens,et al.  Strong-Lensing Analysis of A1689 from Deep Advanced Camera Images , 2004, astro-ph/0409132.

[96]  M. Bureau,et al.  Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks , 2004, astro-ph/0403226.

[97]  M. Bureau,et al.  Accepted for publication in The Astronomical Journal Stellar Kinematics of Boxy Bulges: Large-Scale Bars and Inner Disks , 2004 .

[98]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[99]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[100]  M. Bershady,et al.  The Disk Mass project; science case for a new PMAS IFU module , 2003, astro-ph/0311555.

[101]  K. Kuijken,et al.  A Dearth of Dark Matter in Ordinary Elliptical Galaxies , 2003, Science.

[102]  P. Côté,et al.  Dynamics of the Globular Cluster System Associated with M49 (NGC 4472): Cluster Orbital Properties and the Distribution of Dark Matter , 2003, astro-ph/0303229.

[103]  P. P. van der Werf,et al.  A Significant Population of Red, Near-Infrared-selected High-Redshift Galaxies , 2003, astro-ph/0303163.

[104]  P. P. van der Werf,et al.  Spectroscopic Confirmation of a Substantial Population of Luminous Red Galaxies at Redshifts z ≳ 2 , 2003, astro-ph/0303166.

[105]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[106]  Y. Mellier,et al.  A radial mass profile analysis of the lensing cluster MS 2137.3–2353 , 2002, astro-ph/0212214.

[107]  Y. Jing,et al.  Triaxial Modeling of Halo Density Profiles with High-Resolution N-Body Simulations , 2002, astro-ph/0202064.

[108]  R. Bender,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[109]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[110]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[111]  George Lake,et al.  Dark Matter Substructure within Galactic Halos , 1999, astro-ph/9907411.

[112]  F. Prada,et al.  Where are the missing galactic satellites? , 1999, astro-ph/9901240.

[113]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[114]  S. McGaugh,et al.  Testing the Dark Matter Hypothesis with Low Surface Brightness Galaxies and Other Evidence , 1998, astro-ph/9801123.

[115]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[116]  P. T. de Zeeuw,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997, astro-ph/9702126.

[117]  R. Peletier,et al.  A new chemo-evolutionary population synthesis model for early-type galaxies .1. Theoretical basis , 1996, astro-ph/9605112.

[118]  HongSheng Zhao Analytical models for galactic nuclei , 1995, astro-ph/9509122.

[119]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[120]  B. Moore Evidence against dissipation-less dark matter from observations of galaxy haloes , 1994, Nature.

[121]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[122]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[123]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[124]  D. Merritt The Distribution of Dark Matter in the Coma Cluster , 1987 .

[125]  S. Faber,et al.  Contraction of Dark Matter Galactic Halos Due to Baryonic Infall , 1986 .

[126]  J. Bahcall,et al.  Distribution of dark matter in the spiral galaxy NGC 3198. , 1985 .

[127]  P. O. Vandervoort On Schwarzschild's method for the construction of model galaxies , 1984 .

[128]  Gary A. Mamon,et al.  M/L and velocity anisotropy from observations of spherical galaxies, or must M87 have a massive black hole? , 1982 .

[129]  V. Rubin,et al.  Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 /R = 4kpc/ to UGC 2885 /R = 122 kpc/ , 1980 .

[130]  D. Finkbeiner,et al.  Measuring Reddening with SDSS Stellar Spectra , 2011 .

[131]  P. V. D. Okkum,et al.  ACCEPTED FOR PUBLICATION IN APJ LETTERS Preprint typeset using L ATEX style emulateapj A SIGNIFICANT POPULATION OF RED, NEAR-IR SELECTED HIGH REDSHIFT GALAXIES 1 , 2003 .

[132]  K. Gebhardt,et al.  The Dynamical M/l-profile and Distance of the Globular Cluster M15 , 2005 .

[133]  Herwig Dejonghe,et al.  A completely analytical family of anisotropic Plummer models , 1987 .