Let's Do It Again: Bagging Equity Premium Predictors

The literature on excess return prediction has considered a wide array of estimation schemes, among them unrestricted and restricted regression coefficients. We consider bootstrap aggregation (bagging) to smooth parameter restrictions. Two types of restrictions are considered: positivity of the regression coefficient and positivity of the forecast. Bagging constrained estimators can have smaller asymptotic mean-squared prediction errors than forecasts from a restricted model without bagging. Monte Carlo simulations show that forecast gains can be achieved in realistic sample sizes for the stock return problem. In an empirical application using the data set of Campbell, J., and S. Thompson (2008): “Predicting the Equity Premium Out of Sample: Can Anything Beat the Historical Average?”, Review of Financial Studies 21, 1511-1531, we show that we can improve the forecast performance further by smoothing the restriction through bagging.

[1]  Sydney C. Ludvigson,et al.  Consumption, Aggregate Wealth and Expected Stock Returns , 1999 .

[2]  Lutz Kilian,et al.  How Useful is Bagging in Forecasting Economic Time Series? A Case Study of Us CPI Inflation , 2005 .

[3]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[4]  Jon Faust,et al.  Comparing Greenbook and Reduced Form Forecasts Using a Large Realtime Dataset , 2007 .

[5]  P. Hall,et al.  On blocking rules for the bootstrap with dependent data , 1995 .

[6]  Sergei Sarkissian,et al.  Spurious Regressions in Financial Economics? , 2002 .

[7]  W. Torous,et al.  On Predicting Stock Returns with Nearly Integrated Explanatory Variables , 2004 .

[8]  N. Mark,et al.  Exchange Rates and Fundamentals: Evidence on Long-Horizon Predictability , 1995 .

[9]  R. Koenker,et al.  Asymptotic Theory of Least Absolute Error Regression , 1978 .

[10]  Arturo Estrella,et al.  The term structure as a predictor of real economic activity , 1991 .

[11]  R. Shiller,et al.  Stock Prices, Earnings and Expected Dividends , 1988 .

[12]  C. Nelson,et al.  Predictable Stock Returns: The Role of Small Sample Bias , 1993 .

[13]  R. Shiller,et al.  Valuation Ratios and the Long-Run Stock Market Outlook , 1998 .

[14]  A. Timmermann,et al.  Market timing and return prediction under model instability , 2002 .

[15]  P. Hall,et al.  ESTIMATING A PARAMETER WHEN IT IS KNOWN THAT THE PARAMETER EXCEEDS A GIVEN VALUE , 2009 .

[16]  P. Bossaerts,et al.  Implementing Statistical Criteria to Select Return Forecasting Models: What Do We Learn? , 1999 .

[17]  N. Barberis Investing for the Long Run When Returns are Predictable , 2000 .

[18]  David C. Wheelock,et al.  Can the Term Spread Predict Output Growth and Recessions? A Survey of the Literature , 2009 .

[19]  Lutz Kilian,et al.  Exchange Rates and Monetary Fundamentals: What Do We Learn from Long-Horizon Regressions? , 1999 .

[20]  Todd E. Clark,et al.  Using Out-of-Sample Mean Squared Prediction Errors to Test the Martingale Difference Hypothesis , 2004 .

[21]  Graham Elliott,et al.  Inference in Models with Nearly Integrated Regressors , 1995, Econometric Theory.

[22]  E. Fama Stock Returns, Real Activity, Inflation, and Money , 1981 .

[23]  Donald B. Keim,et al.  Predicting returns in the stock and bond markets , 1986 .

[24]  E. Fama,et al.  Dividend yields and expected stock returns , 1988 .

[25]  Bernd Fitzenberger,et al.  The moving blocks bootstrap and robust inference for linear least squares and quantile regressions , 1998 .

[26]  Yang Yang,et al.  Bagging binary and quantile predictors for time series , 2006 .

[27]  R. Shiller,et al.  The Dividend-Price Ratio and Expectations of Future Dividends and Discount Factors , 1986 .

[28]  Tae-Hwy Lee,et al.  To Combine Forecasts or to Combine Information? , 2010 .

[29]  J. Lewellen,et al.  Predicting Returns with Financial Ratios , 2002 .

[30]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[31]  Guofu Zhou,et al.  Out-of-Sample Equity Premium Prediction: Combination Forecasts and Links to the Real Economy , 2009 .

[32]  Allan Timmermann,et al.  Elusive Return Predictability , 2008 .

[33]  S. B. Thompson,et al.  Cross-sectional forecasts of the equity premium , 2006 .

[34]  R. Stambaugh,et al.  Predictive Regressions , 1999 .

[35]  A. Buja,et al.  OBSERVATIONS ON BAGGING , 2006 .

[36]  Marcelo C. Medeiros,et al.  Modeling and Forecasting Short-term Interest Rates: The Benefits of Smooth Regimes, Macroeconomic Variables, and Bagging , 2011 .

[37]  G. William Schwert,et al.  Asset returns and inflation , 1977 .

[38]  Jeffrey Wurgler,et al.  The Equity Share in New Issues and Aggregate Stock Returns , 1999 .

[39]  P. Bühlmann,et al.  Analyzing Bagging , 2001 .

[40]  Andrew Ang,et al.  Stock Return Predictability: Is it There? , 2001 .

[41]  J. Stock,et al.  Why Has U.S. Inflation Become Harder to Forecast , 2007 .

[42]  Marcelo C. Medeiros,et al.  Forecasting realized volatility models:the benefits of bagging and nonlinear specifications , 2007 .

[43]  Michael S. Rozeff Dividend yields are equity risk premiums , 1984 .

[44]  Alexander W. Butler,et al.  Can Managers Forecast Aggregate Market Returns? , 2003 .

[45]  A. Timmermann,et al.  Predictability of Stock Returns: Robustness and Economic Significance , 1995 .

[46]  David E. Rapach,et al.  Bagging or Combining (or Both)? An Analysis Based on Forecasting U.S. Employment Growth , 2010 .

[47]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[48]  F. Douglas Foster,et al.  Assessing goodness-of-fit of asset pricing models: The distribution of the maximal R2 , 1997 .

[49]  J. Friedman,et al.  On bagging and nonlinear estimation , 2007 .

[50]  I. Welch,et al.  A Comprehensive Look at the Empirical Performance of Equity Premium Prediction II , 2004, SSRN Electronic Journal.

[51]  J. Campbell Stock Returns and the Term Structure , 1985 .

[52]  E. Fama,et al.  BUSINESS CONDITIONS AND EXPECTED RETURNS ON STOCKS AND BONDS , 1989 .