Chiral field theories, Konishi anomalies and matrix models

We study a chiral = 1, U(N) field theory in the context of the Dijkgraaf-Vafa correspondence. Our model contains one adjoint, one conjugate symmetric and one antisymmetric chiral multiplet, as well as eight fundamentals. We compute the generalized Konishi anomalies and compare the chiral ring relations they induce with the loop equations of the (intrinsically holomorphic) matrix model defined by the tree-level superpotential of the field theory. Surprisingly, we find that the matrix model is well-defined only if the number of flavors equals two! Despite this mismatch, we show that the 1/ expansion of the loop equations agrees with the generalized Konishi constraints. This indicates that the matrix model — gauge theory correspondence should generally be modified when applied to theories with net chirality. We also show that this chiral theory produces the same gaugino superpotential as a nonchiral SO(N) model with a single symmetric multiplet and a polynomial superpotential.

[1]  C. Lazaroiu,et al.  Puzzles for matrix models of chiral field theories , 2003, hep-th/0311103.

[2]  C. Lazaroiu,et al.  Chiral field theories from conifolds , 2003, hep-th/0310052.

[3]  F. Cachazo Notes on supersymmetric Sp(N) theories with an antisymmetric tensor , 2003, hep-th/0307063.

[4]  E. Trincherini,et al.  Phases and geometry of the Script N = 1 A2 quiver gauge theory and matrix models , 2003, hep-th/0307054.

[5]  C. Lazaroiu,et al.  Anti)symmetric matter and superpotentials from IIB orientifolds , 2003, hep-th/0306236.

[6]  R. Heise,et al.  Chiral SU(N) gauge theories and the Konishi anomaly , 2003, hep-th/0306125.

[7]  Y. Nakayama Effective Gauge degrees of freedom and the (non)existence of the glueball superpotential , 2003, hep-th/0306007.

[8]  H. Schnitzer,et al.  Matrix-model description of N=2 gauge theories with non-hyperelliptic Seiberg–Witten curves , 2003, hep-th/0305263.

[9]  C. Vafa,et al.  The Glueball Superpotential , 2003, hep-th/0304271.

[10]  Per Kraus,et al.  Loop equations, matrix models, and Script N = 1 supersymmetric gauge theories , 2003, hep-th/0304138.

[11]  L. Alday,et al.  Effective superpotentials via Konishi anomaly , 2003, hep-th/0304119.

[12]  H. Schnitzer,et al.  Cubic curves from matrix models and generalized Konishi anomalies , 2003, hep-th/0303268.

[13]  E. Witten,et al.  Chiral Rings and Phases of Supersymmetric Gauge Theories , 2003, hep-th/0303207.

[14]  H. Murayama,et al.  Matrix model description of baryonic deformations , 2003, hep-th/0303115.

[15]  C. Lazaroiu,et al.  Geometric regularizations and dual conifold transitions , 2003, hep-th/0303054.

[16]  C. Lazaroiu,et al.  Constructing gauge theory geometries from matrix models , 2003, hep-th/0303032.

[17]  H. Ita,et al.  Chiral Rings, Superpotentials and the Vacuum Structure of N = 1 Supersymmetric Gauge Theories , 2003, hep-th/0303001.

[18]  C. Lazaroiu Holomorphic matrix models , 2003, hep-th/0303008.

[19]  R. Roiban,et al.  Massless flavor in geometry and matrix models , 2003, hep-th/0301217.

[20]  E. Witten,et al.  Phases of = 1 supersymmetric gauge theories , 2003, hep-th/0301006.

[21]  C. Hofman Super Yang-Mills with flavors from large-Nf matrix models , 2002, hep-th/0212095.

[22]  Kristian D. Kennaway,et al.  Unoriented strings, loop equations, and N =1 superpotentials from matrix models , 2002, hep-th/0211291.

[23]  R. Roiban,et al.  Baryons, boundaries and matrix models , 2002, hep-th/0211271.

[24]  H. Ita,et al.  Perturbative computation of glueball superpotentials for SO(N) and USp(N) , 2002, hep-th/0211261.

[25]  N. Seiberg Chiral Rings and Anomalies in Supersymmetric Gauge Theory , 2002, hep-th/0211170.

[26]  R. Roiban,et al.  Exact superpotentials in N = 1 theories with flavor and their matrix model formulation , 2002, hep-th/0211075.

[27]  M. Grisaru,et al.  Perturbative computation of glueball superpotentials , 2002, hep-th/0211017.

[28]  J. McGreevy Adding flavor to Dijkgraaf-Vafa , 2002, hep-th/0211009.

[29]  R. Heise,et al.  EXACT SUPERPOTENTIALS FOR THEORIES WITH FLAVORS VIA A MATRIX INTEGRAL , 2002, hep-th/0210291.

[30]  A. Gorsky Konishi anomaly and N=1 effective superpotentials from the matrix models , 2002, hep-th/0210281.

[31]  C. Vafa,et al.  A Perturbative Window into Non-Perturbative Physics , 2002, hep-th/0208048.

[32]  C. Vafa,et al.  On geometry and matrix models , 2002, hep-th/0207106.

[33]  C. Vafa,et al.  Matrix models, topological strings, and supersymmetric gauge theories , 2002, hep-th/0206255.

[34]  H. Ooguri,et al.  Worldsheet derivation of a large N duality , 2002, hep-th/0205297.

[35]  R. Tǎtar,et al.  Duality and confinement in N=1 supersymmetric theories from geometric transitions , 2001, hep-th/0112040.

[36]  K. Dasgupta,et al.  Geometric Transition versus Cascading Solution , 2001, hep-th/0110050.

[37]  S. Katz,et al.  A Geometric unification of dualities , 2001, hep-th/0110028.

[38]  S. Katz,et al.  Geometric Transitions and N=1 Quiver Theories , 2001, hep-th/0108120.

[39]  K. Dasgupta,et al.  Open/Closed String Dualities and Seiberg Duality from Geometric Transitions in M-theory , 2001, hep-th/0106040.

[40]  K. Dasgupta,et al.  Geometric transition, large /N dualities and MQCD dynamics , 2001, hep-th/0105066.

[41]  D. Lowe,et al.  Supersymmetric gauge theories from branes and orientifold six planes , 1998, hep-th/9805158.

[42]  Jaemo Park M-THEORY REALIZATION OF A AN N = 1 SUPERSYMMETRIC CHIRAL GAUGE THEORY IN FOUR DIMENSIONS , 1998, hep-th/9805029.

[43]  A. Zaffaroni,et al.  On the realization of chiral four-dimensional gauge theories using branes , 1998, hep-th/9801134.

[44]  A. Karch,et al.  Brane dynamics and chiral non-chiral transitions , 1998, hep-th/9801017.

[45]  D. Kutasov,et al.  Branes, orientifolds and chiral gauge theories , 1998, hep-th/9801020.

[46]  D. Lowe,et al.  Duality of chiral N=1 supersymmetric gauge theories via branes , 1998, hep-th/9801002.

[47]  K. Landsteiner,et al.  New curves from branes , 1997, hep-th/9708118.

[48]  K. Intriligator New RG fixed points and duality in supersymmetric SP(Nc) and SO(Nc) gauge theories , 1995, hep-th/9505051.