Hyperfine structure of Ho3+ levels and electron–phonon coupling in Y PO4 single crystals

High resolution spectroscopy (the finest being 0.01 cm−1) was applied in the 75–25 000 cm−1 and 9–300 K ranges to a 1 mol% holmium doped Y PO4 single crystal with two purposes: (1) to study the hyperfine splitting of Ho3+ energy levels of interest for possible quantum manipulation media and (2) to analyze the electron–phonon interaction. The hyperfine structure was clearly revealed for a high number of lines in a wide wavenumber range (up to ∼21 500 cm−1) and for a large number of multiplets. Several hyperfine patterns were monitored, differing in the number of components (a maximum of 16 could be easily distinguished in a single beautiful pattern), in their separation, and in their relative statistical weight. These features were all understood in terms of a crystal-field model, whose results are in good agreement with experiments and account for the involved level symmetry, the type of transitions (electric and magnetic dipole allowed), and the contribution of a second-order (pseudoquadrupolar) hyperfine coupling between close levels. The electron–phonon interaction, investigated through the thermally induced line shift, was critically discussed in the framework of single phonon coupling and of two phonon Raman scattering models.

[1]  E. Cazzanelli,et al.  Vibrational dynamics of YPO 4 and ScPO 4 single crystals: An integrated study by polarized Raman spectroscopy and first-principles calculations , 2011 .

[2]  J. G. Solé,et al.  Optical Spectroscopy of YPO4 Single Crystals Doped with Ho3+ , 2010 .

[3]  Yongmin Li,et al.  Efficient quantum memory for light , 2010, Nature.

[4]  Pieter Dorenbos,et al.  Controlled electron and hole trapping in YPO 4 : Ce 3 + , Ln 3 + and LuPO 4 : Ce 3 + , Ln 3 + ( Ln = Sm , Dy, Ho, Er, Tm) , 2009 .

[5]  M. Tonelli,et al.  Energy levels and emission parameters of the Dy3+ ion doped into the YPO4 host lattice , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[6]  Yuhua Wang,et al.  Near-infrared quantum cutting in YPO4:Yb3+, Tm3+ via cooperative energy transfer , 2009 .

[7]  L. Kovács,et al.  Infrared absorption spectra of pure and doped YAl3(BO3)4 single crystals , 2009 .

[8]  M. Popova,et al.  Lines of Ho3+-Ho3+ pair centers in optical spectra of LiYF4 and LiLuF4 crystals , 2008 .

[9]  Hans Joachim Eichler,et al.  Tetragonal YPO4 – a novel SRS-active crystal , 2008 .

[10]  I. Földvári,et al.  Hyperfine interactions in YAB: Ho3+: A high-resolution spectroscopy investigation , 2007 .

[11]  M. Tonelli,et al.  Role ofEr3+concentration in high-resolution spectra ofBaY2F8single crystals , 2005 .

[12]  M. F. Reid,et al.  A complete 4fn energy level diagram for all trivalent lanthanide ions , 2005 .

[13]  M. F. Reid,et al.  4fn-¹ 5d-4f¹ emission of Ce³+, Pr³+, Nd³+, Er³+, and Tm³+ in LiYF4 and YPO4 , 2005 .

[14]  N. Strickland,et al.  Hyperfine splittings of infrared lines of the cubic centre in CaF2:Ho3+ , 2004 .

[15]  N. Agladze,et al.  Hyperfine structure in optical spectra of LiYF4-Ho3+: forbidden transitions , 2004 .

[16]  M. F. Reid,et al.  Hyperfine patterns of infrared absorption lines of Ho3+ C4v centres in CaF2 , 2004 .

[17]  N. Strickland,et al.  Hyperfine structure on infrared transitions of cubic sites of Pr3+ and Ho3+ ions in CaF2 , 2003 .

[18]  E. Cavalli,et al.  Optical spectra of yttrium phosphate and yttrium vanadate single crystals activated with Dy3 , 2002 .

[19]  V. Makhov,et al.  Luminescence properties of YPO4:Nd3+: a promising VUV scintillator material , 2002 .

[20]  N. Edelstein,et al.  Spectroscopic investigations and configuration-interaction-assisted crystal field analysis of Pr3+ in YPO4 single crystal , 2002 .

[21]  A. Baraldi,et al.  High-resolution vibrational spectroscopy of Pb-OH defects in KMgF 3 fluoroperovskite single crystals , 2001 .

[22]  S. Girard,et al.  Experimental and theoretical investigation of the 4fn↔4fn-15d transitions in YPO4:Pr3+and YPO4:Pr3+, Ce3+ , 2001 .

[23]  L. Boatner,et al.  Crystal-field splitting, magnetic interaction, and vibronic excitations of 244Cm3+ in YPO4 and LuPO4 , 1998 .

[24]  M. F. Reid,et al.  Intensities of hyperfine transitions of Pr3+ and Ho3+ in CaF2 , 1997 .

[25]  N. Kolmakova,et al.  Magnetoelastic contribution to the thermal expansion of the rare-earth phosphates TbPO4 and TmPO4 , 1997 .

[26]  Christiane Görller-Walrand,et al.  Chapter 155 Rationalization of crystal-field parametrization , 1996 .

[27]  A. Meijerink,et al.  THE VARIATION OF THE ELECTRON-PHONON COUPLING STRENGTH THROUGH THE TRIVALENT LANTHANIDE ION SERIES , 1995 .

[28]  N. Manson,et al.  Holeburning and Optical/RF Double Resonance Studies of Trigonal Ho3+ Centers in CaF2 , 1995, Spectral Hole-Burning and Related Spectroscopies: Science and Applications.

[29]  Á. Péter,et al.  FTIR spectroscopy of OH stretching modes in BSO, BGO and BTO sillenites , 1994 .

[30]  L. Boatner,et al.  Rare-earth energy levels and magnetic properties of HoPO4 and ErPO4 , 1993 .

[31]  Mártin,et al.  Hyperfine structure of 5I8-->5F5 optical transitions within the trigonal center of CaF2:Ho3+ , 1993, Physical Review B (Condensed Matter).

[32]  N. Manson,et al.  Hyperfine coupling between crystal-field levels in the tetragonal centre of CaF2:Ho3+ , 1993 .

[33]  H. Kahle,et al.  Crystal-field spectra of trivalent holmium in HoVO4, HoAsO4, HoPO4 and Y(OH)3 in the infrared region , 1991 .

[34]  Egorov,et al.  Isotope structure in optical spectra of LiYF4:Ho3+ , 1991, Physical review letters.

[35]  Dumas,et al.  Coupling of an adsorbate vibration to a substrate surface phonon: H on Si(111). , 1990, Physical review letters.

[36]  M. Enderle,et al.  Absorption spectra and Zeeman effect of the trivalent holmium ion in compounds with tetragonal zircon structure. I. Ho3+ in YVO4 , 1990 .

[37]  Z. Y. Zhang Temperature dependence of the frequency shift of adsorbate vibrations via interaction with substrate phonons: CO on Pt(111) , 1990 .

[38]  R. S. Rana,et al.  A systematic analysis of the spectra of the lanthanides doped into single crystal LaF3 , 1989 .

[39]  B. Wanklyn,et al.  Crystal field energies and magnetic properties of holmium phosphate , 1989 .

[40]  M. Popova,et al.  Hyperfine structure in optical spectra of LiYF4-Ho , 1985 .

[41]  R. Capelletti Kinetics of defect clustering in ionic solids , 1983 .

[42]  P. Becker Optical Absorption Intensities of Ho3+ in YPO4 , 1971 .

[43]  P. Becker Crystal Field Parameters of Ho3+ in YPO4 , 1970 .

[44]  H. Kahle,et al.  Absorption Spectrum and Zeeman Effect of Ho3+ in YPO4 , 1969 .

[45]  Richard W. Mooney,et al.  Molecular Vibrations of the PO43− Ion, Site Symmetry D2d, in YPO4 , 1967 .

[46]  R. Feigelson Synthesis and Single‐Crystal Growth of Rare‐Earth Orthophosphates , 1964 .