Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty

Algorithmic transparency entails exposing system properties to various stakeholders for purposes that include understanding, improving, and contesting predictions. Until now, most research into algorithmic transparency has predominantly focused on explainability. Explainability attempts to provide reasons for a machine learning model's behavior to stakeholders. However, understanding a model's specific behavior alone might not be enough for stakeholders to gauge whether the model is wrong or lacks sufficient knowledge to solve the task at hand. In this paper, we argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions. First, we discuss methods for assessing uncertainty. Then, we characterize how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems. Finally, we outline methods for displaying uncertainty to stakeholders and recommend how to collect information required for incorporating uncertainty into existing ML pipelines. This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness. We aim to encourage researchers and practitioners to measure, communicate, and use uncertainty as a form of transparency.

[1]  F. Knight The economic nature of the firm: From Risk, Uncertainty, and Profit , 2009 .

[2]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[3]  G. Brier VERIFICATION OF FORECASTS EXPRESSED IN TERMS OF PROBABILITY , 1950 .

[4]  J. Wolfowitz,et al.  Introduction to the Theory of Statistics. , 1951 .

[5]  A. A. Lumsdaine Communication and persuasion , 1954 .

[6]  B. L. Welch,et al.  Introduction to the Theory of Statistics , 1964 .

[7]  L. Freeman Elementary Applied Statistics , 1966 .

[8]  Sarah Lichtenstein,et al.  Empirical scaling of common verbal phrases associated with numerical probabilities , 1967 .

[9]  Franklin A. Graybill,et al.  Introduction to the Theory of Statistics, 3rd ed. , 1974 .

[10]  A. Tversky,et al.  Judgment under Uncertainty: Heuristics and Biases , 1974, Science.

[11]  A D Pearman,et al.  Uncertainty in Planning: Characterisation, Evaluation, and Feedback , 1985 .

[12]  D. Budescu,et al.  Consistency in interpretation of probabilistic phrases , 1985 .

[13]  J. Cacioppo,et al.  The Elaboration Likelihood Model of Persuasion , 1986 .

[14]  Lawrence M. Fagan,et al.  The Use of a Heuristic Problem-Solving Hierarchy to Facilitate the Explanation of Hypothesis-Directed Reasoning , 2016 .

[15]  John T. Cacioppo,et al.  The Elaboration Likelihood Model of Persuasion , 1986, Advances in Experimental Social Psychology.

[16]  Suzanne M. Miller Monitoring and blunting: Validation of a questionnaire to assess styles of information seeking under threat. , 1987 .

[17]  James M. Olson,et al.  Uncertainty orientation and persuasion: Individual differences in the effects of personal relevance on social judgments. , 1988 .

[18]  Eric Horvitz,et al.  Heuristic Abstraction in the Decision-Theoretic Pathfinder System , 1989 .

[19]  D. Clark Verbal uncertainty expressions: A critical review of two decades of research , 1990 .

[20]  A. Tversky,et al.  Preference and belief: Ambiguity and competence in choice under uncertainty , 1991 .

[21]  A. Tversky,et al.  The Disjunction Effect in Choice under Uncertainty , 1992 .

[22]  A. Tversky,et al.  Advances in prospect theory: Cumulative representation of uncertainty , 1992 .

[23]  David J. C. MacKay,et al.  A Practical Bayesian Framework for Backpropagation Networks , 1992, Neural Computation.

[24]  Geoffrey E. Hinton,et al.  Keeping the neural networks simple by minimizing the description length of the weights , 1993, COLT '93.

[25]  Paul H. Kupiec,et al.  Techniques for Verifying the Accuracy of Risk Measurement Models , 1995 .

[26]  J. H. Davis,et al.  An Integrative Model Of Organizational Trust , 1995 .

[27]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[28]  Stephen C. Hora,et al.  Aleatory and epistemic uncertainty in probability elicitation with an example from hazardous waste management , 1996 .

[29]  Debora Shaw,et al.  Handbook of usability testing: How to plan, design, and conduct effective tests , 1996 .

[30]  Jürgen Schmidhuber,et al.  Flat Minima , 1997, Neural Computation.

[31]  Raja Parasuraman,et al.  Trust in Decision Aids: a Model and Its Training Implications , 1998 .

[32]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[33]  D G Altman,et al.  Bayesians and frequentists , 1998, BMJ.

[34]  J. Hintze,et al.  Violin plots : A box plot-density trace synergism , 1998 .

[35]  J. G. Hollands,et al.  The visual communication of risk. , 1999, Journal of the National Cancer Institute. Monographs.

[36]  P. Rousseeuw,et al.  The Bagplot: A Bivariate Boxplot , 1999 .

[37]  H. Shimodaira,et al.  Improving predictive inference under covariate shift by weighting the log-likelihood function , 2000 .

[38]  Thomas G. Dietterich Ensemble Methods in Machine Learning , 2000, Multiple Classifier Systems.

[39]  Simon Haykin,et al.  GradientBased Learning Applied to Document Recognition , 2001 .

[40]  Yvonne Rogers,et al.  Interaction Design: Beyond Human-Computer Interaction , 2002 .

[41]  Austin Henderson,et al.  Interaction design: beyond human-computer interaction , 2002, UBIQ.

[42]  Mike Kuniavsky,et al.  Observing the User Experience: A Practitioner's Guide to User Research (Morgan Kaufmann Series in Interactive Technologies) (The Morgan Kaufmann Series in Interactive Technologies) , 2003 .

[43]  Leo Breiman,et al.  Bagging Predictors , 1996, Machine Learning.

[44]  Christopher A. Miller,et al.  Trust and etiquette in high-criticality automated systems , 2004, CACM.

[45]  John D. Lee,et al.  Trust in Automation: Designing for Appropriate Reliance , 2004 .

[46]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[47]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[48]  Christopher M. Bishop,et al.  Pattern Recognition and Machine Learning (Information Science and Statistics) , 2006 .

[49]  A. Tversky,et al.  Prospect theory: an analysis of decision under risk — Source link , 2007 .

[50]  Paul K J Han,et al.  Communicating the Uncertainty of Harms and Benefits of Medical Interventions , 2007, Medical decision making : an international journal of the Society for Medical Decision Making.

[51]  P. Ubel,et al.  Validation of the Subjective Numeracy Scale: Effects of Low Numeracy on Comprehension of Risk Communications and Utility Elicitations , 2007, Medical decision making : an international journal of the Society for Medical Decision Making.

[52]  Rui Menezes,et al.  Entropy and Uncertainty Analysis in Financial Markets , 2007, 0709.0668.

[53]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[54]  P. Slovic,et al.  Numeracy skill and the communication, comprehension, and use of risk-benefit information. , 2007, Health affairs.

[55]  S. Sundar The MAIN Model : A Heuristic Approach to Understanding Technology Effects on Credibility , 2007 .

[56]  Peter L. Bartlett,et al.  Classification with a Reject Option using a Hinge Loss , 2008, J. Mach. Learn. Res..

[57]  V. Reyna,et al.  Numeracy, Ratio Bias, and Denominator Neglect in Judgments of Risk and Probability. , 2008 .

[58]  Elizabeth Goodman,et al.  Three environmental discourses in human-computer interaction , 2009, CHI Extended Abstracts.

[59]  A. Kiureghian,et al.  Aleatory or epistemic? Does it matter? , 2009 .

[60]  Daniel Hernández Lobato Prediction based on averages over automatically induced learners ensemble methods and Bayesian techniques , 2009 .

[61]  T. Rakow Risk, uncertainty and prophet: The psychological insights of Frank H. Knight , 2010, Judgment and Decision Making.

[62]  M. Galesic,et al.  Statistical Numeracy for Health A Cross-cultural Comparison With Probabilistic National Samples , 2010 .

[63]  Blaise Hanczar,et al.  Accuracy-Rejection Curves (ARCs) for Comparing Classification Methods with a Reject Option , 2009, MLSB.

[64]  Alex Graves,et al.  Practical Variational Inference for Neural Networks , 2011, NIPS.

[65]  Zoubin Ghahramani,et al.  Bayesian Active Learning for Classification and Preference Learning , 2011, ArXiv.

[66]  S. Broomell,et al.  Effective communication of uncertainty in the IPCC reports , 2012, Climatic Change.

[67]  R. Weisberg A-N-D , 2011 .

[68]  Mike Pearson,et al.  Visualizing Uncertainty About the Future , 2022 .

[69]  Howard Balshem,et al.  GRADE guidelines: 3. Rating the quality of evidence. , 2011, Journal of clinical epidemiology.

[70]  Yee Whye Teh,et al.  Bayesian Learning via Stochastic Gradient Langevin Dynamics , 2011, ICML.

[71]  Hang Zhang,et al.  Ubiquitous Log Odds: A Common Representation of Probability and Frequency Distortion in Perception, Action, and Cognition , 2012, Front. Neurosci..

[72]  Xiangliang Zhang,et al.  Decision Theory for Discrimination-Aware Classification , 2012, 2012 IEEE 12th International Conference on Data Mining.

[73]  M. Galesic,et al.  Statistical Numeracy for Health , 2012 .

[74]  Toniann Pitassi,et al.  Fairness through awareness , 2011, ITCS '12.

[75]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[76]  Kevin Dowd,et al.  Back‐Testing Market Risk Models , 2012 .

[77]  Toniann Pitassi,et al.  Learning Fair Representations , 2013, ICML.

[78]  Miriam J. Metzger,et al.  Credibility and trust of information in online environments: The use of cognitive heuristics , 2013 .

[79]  K. Singh,et al.  Confidence Distribution, the Frequentist Distribution Estimator of a Parameter: A Review , 2013 .

[80]  Gilles Blanchard,et al.  Classification with Asymmetric Label Noise: Consistency and Maximal Denoising , 2013, COLT.

[81]  Michael Gleicher,et al.  Error Bars Considered Harmful , 2013 .

[82]  Michael Gleicher,et al.  Error Bars Considered Harmful: Exploring Alternate Encodings for Mean and Error , 2014, IEEE Transactions on Visualization and Computer Graphics.

[83]  Alexander L. Davis,et al.  Communicating scientific uncertainty , 2014, Proceedings of the National Academy of Sciences.

[84]  John K. Kruschke,et al.  Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan , 2014 .

[85]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[86]  Gheorghe Tecuci,et al.  Toward cognitive assistants for complex decision making under uncertainty , 2014, Intell. Decis. Technol..

[87]  Tianqi Chen,et al.  Stochastic Gradient Hamiltonian Monte Carlo , 2014, ICML.

[88]  Shai Ben-David,et al.  Understanding Machine Learning: From Theory to Algorithms , 2014 .

[89]  Rachel K. E. Bellamy,et al.  Designing Information for Remediating Cognitive Biases in Decision-Making , 2015, CHI.

[90]  P. Resnick,et al.  Hypothetical Outcome Plots Outperform Error Bars and Violin Plots for Inferences about Reliability of Variable Ordering , 2015, PloS one.

[91]  Max Welling,et al.  Variational Dropout and the Local Reparameterization Trick , 2015, NIPS 2015.

[92]  Masooda N. Bashir,et al.  Trust in Automation: Integrating Empirical Evidence on Factors That Influence Trust , 2015, Hum. Factors.

[93]  Zoubin Ghahramani,et al.  Probabilistic machine learning and artificial intelligence , 2015, Nature.

[94]  Julien Cornebise,et al.  Weight Uncertainty in Neural Network , 2015, ICML.

[95]  Ryan P. Adams,et al.  Probabilistic Backpropagation for Scalable Learning of Bayesian Neural Networks , 2015, ICML.

[96]  Jonathan P. How,et al.  Decision Making Under Uncertainty: Theory and Application , 2015 .

[97]  Milos Hauskrecht,et al.  Obtaining Well Calibrated Probabilities Using Bayesian Binning , 2015, AAAI.

[98]  Masooda Bashir,et al.  Trust in Automation , 2015, Hum. Factors.

[99]  Yang Wang,et al.  Investigating User Confidence for Uncertainty Presentation in Predictive Decision Making , 2015, OZCHI.

[100]  Roberto Cipolla,et al.  Modelling uncertainty in deep learning for camera relocalization , 2015, 2016 IEEE International Conference on Robotics and Automation (ICRA).

[101]  Emre Kıcıman,et al.  Social Data: Biases, Methodological Pitfalls, and Ethical Boundaries , 2018, Front. Big Data.

[102]  Yarin Gal,et al.  Uncertainty in Deep Learning , 2016 .

[103]  K. Lum,et al.  To predict and serve? , 2016 .

[104]  Carlos Guestrin,et al.  "Why Should I Trust You?": Explaining the Predictions of Any Classifier , 2016, ArXiv.

[105]  Nathan Srebro,et al.  Equality of Opportunity in Supervised Learning , 2016, NIPS.

[106]  John Zimmerman,et al.  Investigating the Heart Pump Implant Decision Process: Opportunities for Decision Support Tools to Help , 2016, CHI.

[107]  Sean A. Munson,et al.  When (ish) is My Bus?: User-centered Visualizations of Uncertainty in Everyday, Mobile Predictive Systems , 2016, CHI.

[108]  Zoubin Ghahramani,et al.  Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning , 2015, ICML.

[109]  Percy Liang,et al.  Understanding Black-box Predictions via Influence Functions , 2017, ICML.

[110]  Alexander G. de G. Matthews,et al.  Scalable Gaussian process inference using variational methods , 2017 .

[111]  Kush R. Varshney,et al.  Optimized Pre-Processing for Discrimination Prevention , 2017, NIPS.

[112]  Roberto Cipolla,et al.  Bayesian SegNet: Model Uncertainty in Deep Convolutional Encoder-Decoder Architectures for Scene Understanding , 2015, BMVC.

[113]  Alexandra Chouldechova,et al.  Fair prediction with disparate impact: A study of bias in recidivism prediction instruments , 2016, Big Data.

[114]  Zhe Zhao,et al.  Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations , 2017, ArXiv.

[115]  Avi Feller,et al.  Algorithmic Decision Making and the Cost of Fairness , 2017, KDD.

[116]  Been Kim,et al.  Towards A Rigorous Science of Interpretable Machine Learning , 2017, 1702.08608.

[117]  Charles Blundell,et al.  Simple and Scalable Predictive Uncertainty Estimation using Deep Ensembles , 2016, NIPS.

[118]  Adam Wierman,et al.  Thinking Fast and Slow , 2017, SIGMETRICS Perform. Evaluation Rev..

[119]  Michael A. Rupp,et al.  Insights into Human-Agent Teaming: Intelligent Agent Transparency and Uncertainty , 2017 .

[120]  Kilian Q. Weinberger,et al.  On Calibration of Modern Neural Networks , 2017, ICML.

[121]  D. Spiegelhalter Risk and Uncertainty Communication , 2017 .

[122]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in the Fair Determination of Risk Scores , 2016, ITCS.

[123]  Ankur Taly,et al.  Axiomatic Attribution for Deep Networks , 2017, ICML.

[124]  Jon M. Kleinberg,et al.  On Fairness and Calibration , 2017, NIPS.

[125]  Shai Ben-David,et al.  Empirical Risk Minimization under Fairness Constraints , 2018, NeurIPS.

[126]  Percy Liang,et al.  Fairness Without Demographics in Repeated Loss Minimization , 2018, ICML.

[127]  Timnit Gebru,et al.  Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification , 2018, FAT.

[128]  John Langford,et al.  A Reductions Approach to Fair Classification , 2018, ICML.

[129]  Suresh Venkatasubramanian,et al.  Runaway Feedback Loops in Predictive Policing , 2017, FAT.

[130]  Josh Lovejoy The UX of AI: Using Google Clips to Understand how a Human-Centered Design Process Elevates Artificial Intelligence , 2018, AAAI Spring Symposia.

[131]  Moritz Körber,et al.  Theoretical Considerations and Development of a Questionnaire to Measure Trust in Automation , 2018, Advances in Intelligent Systems and Computing.

[132]  Zhanxing Zhu,et al.  Bayesian Adversarial Learning , 2018, NeurIPS.

[133]  Graham W. Taylor,et al.  Learning Confidence for Out-of-Distribution Detection in Neural Networks , 2018, ArXiv.

[134]  Emily Chen,et al.  How do Humans Understand Explanations from Machine Learning Systems? An Evaluation of the Human-Interpretability of Explanation , 2018, ArXiv.

[135]  Onora O’Neill,et al.  Linking Trust to Trustworthiness , 2018, From Trust to Trustworthiness.

[136]  Niko Sünderhauf,et al.  Dropout Sampling for Robust Object Detection in Open-Set Conditions , 2017, 2018 IEEE International Conference on Robotics and Automation (ICRA).

[137]  Jon M. Kleinberg,et al.  Inherent Trade-Offs in Algorithmic Fairness , 2018, PERV.

[138]  Mark J. F. Gales,et al.  Predictive Uncertainty Estimation via Prior Networks , 2018, NeurIPS.

[139]  Maya R. Gupta,et al.  Proxy Fairness , 2018, ArXiv.

[140]  Blake Lemoine,et al.  Mitigating Unwanted Biases with Adversarial Learning , 2018, AIES.

[141]  Kibok Lee,et al.  A Simple Unified Framework for Detecting Out-of-Distribution Samples and Adversarial Attacks , 2018, NeurIPS.

[142]  Richard E. Turner,et al.  Variational Continual Learning , 2017, ICLR.

[143]  Toniann Pitassi,et al.  Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer , 2017, NeurIPS.

[144]  Jishnu Mukhoti,et al.  Evaluating Bayesian Deep Learning Methods for Semantic Segmentation , 2018, ArXiv.

[145]  David Sontag,et al.  Why Is My Classifier Discriminatory? , 2018, NeurIPS.

[146]  Kevin Smith,et al.  Bayesian Uncertainty Estimation for Batch Normalized Deep Networks , 2018, ICML.

[147]  Munmun De Choudhury,et al.  Where is the Human?: Bridging the Gap Between AI and HCI , 2019, CHI Extended Abstracts.

[148]  Emmanuel J. Candès,et al.  With Malice Towards None: Assessing Uncertainty via Equalized Coverage , 2019, ArXiv.

[149]  Sebastian Nowozin,et al.  Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift , 2019, NeurIPS.

[150]  Omesh Tickoo,et al.  Probabilistic Modeling of Deep Features for Out-of-Distribution and Adversarial Detection , 2019, ArXiv.

[151]  Andrew Gordon Wilson,et al.  A Simple Baseline for Bayesian Uncertainty in Deep Learning , 2019, NeurIPS.

[152]  Jeremy Nixon,et al.  Measuring Calibration in Deep Learning , 2019, CVPR Workshops.

[153]  Madeleine Udell,et al.  Fairness Under Unawareness: Assessing Disparity When Protected Class Is Unobserved , 2018, FAT.

[154]  Kush R. Varshney,et al.  Increasing Trust in AI Services through Supplier's Declarations of Conformity , 2018, IBM J. Res. Dev..

[155]  Brian W. Powers,et al.  Dissecting racial bias in an algorithm used to manage the health of populations , 2019, Science.

[156]  Paul Drijvers,et al.  Conceptual difficulties when interpreting histograms: A review , 2019, Educational Research Review.

[157]  Harini Suresh,et al.  A Framework for Understanding Unintended Consequences of Machine Learning , 2019, ArXiv.

[158]  S. Shyam Sundar,et al.  Machine Heuristic: When We Trust Computers More than Humans with Our Personal Information , 2019, CHI.

[159]  Adrian Weller,et al.  Transparency: Motivations and Challenges , 2019, Explainable AI.

[160]  Alex Pentland,et al.  Active Fairness in Algorithmic Decision Making , 2018, AIES.

[161]  Sebastian Tschiatschek,et al.  Successor Uncertainties: exploration and uncertainty in temporal difference learning , 2018, NeurIPS.

[162]  Inioluwa Deborah Raji,et al.  Model Cards for Model Reporting , 2018, FAT.

[163]  Inioluwa Deborah Raji,et al.  ABOUT ML: Annotation and Benchmarking on Understanding and Transparency of Machine Learning Lifecycles , 2019, ArXiv.

[164]  Stefan Depeweg,et al.  Modeling Epistemic and Aleatoric Uncertainty with Bayesian Neural Networks and Latent Variables , 2019 .

[165]  Jolynn Pek,et al.  Frequentist and Bayesian approaches to data analysis: Evaluation and estimation , 2020, Psychology Learning & Teaching.

[166]  Yarin Gal,et al.  BatchBALD: Efficient and Diverse Batch Acquisition for Deep Bayesian Active Learning , 2019, NeurIPS.

[167]  Suchi Saria,et al.  Can You Trust This Prediction? Auditing Pointwise Reliability After Learning , 2019, AISTATS.

[168]  مسعود رسول آبادی,et al.  2011 , 2012, The Winning Cars of the Indianapolis 500.

[169]  Peter A. Flach,et al.  Beyond temperature scaling: Obtaining well-calibrated multiclass probabilities with Dirichlet calibration , 2019, NeurIPS.

[170]  Matthew Kay,et al.  In Pursuit of Error: A Survey of Uncertainty Visualization Evaluation , 2019, IEEE Transactions on Visualization and Computer Graphics.

[171]  Well-calibrated Model Uncertainty with Temperature Scaling for Dropout Variational Inference , 2019, ArXiv.

[172]  Ran Canetti,et al.  From Soft Classifiers to Hard Decisions: How fair can we be? , 2018, FAT.

[173]  Andreas Buja,et al.  Models as Approximations II: A Model-Free Theory of Parametric Regression , 2016, Statistical Science.

[174]  Andrew Gordon Wilson,et al.  Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning , 2019, ICLR.

[175]  David S Jones,et al.  Hidden in Plain Sight - Reconsidering the Use of Race Correction in Clinical Algorithms. , 2020, The New England journal of medicine.

[176]  Karthikeyan Natesan Ramamurthy,et al.  Optimized Score Transformation for Fair Classification , 2019, AISTATS.

[177]  Ofir Nachum,et al.  Identifying and Correcting Label Bias in Machine Learning , 2019, AISTATS.

[178]  Michael I. Jordan,et al.  Robust Optimization for Fairness with Noisy Protected Groups , 2020, NeurIPS.

[179]  Joost R. van Amersfoort,et al.  Simple and Scalable Epistemic Uncertainty Estimation Using a Single Deep Deterministic Neural Network , 2020, ICML 2020.

[180]  Ankur Taly,et al.  Explainable machine learning in deployment , 2019, FAT*.

[181]  David J. Spiegelhalter,et al.  The effects of communicating uncertainty on public trust in facts and numbers , 2020, Proceedings of the National Academy of Sciences.

[182]  Richard E. Turner,et al.  On the Expressiveness of Approximate Inference in Bayesian Neural Networks , 2019, NeurIPS.

[183]  Dustin Tran,et al.  Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness , 2020, NeurIPS.

[184]  José Miguel Hernández-Lobato,et al.  Depth Uncertainty in Neural Networks , 2020, NeurIPS.

[185]  Sibel Eker,et al.  Validity and usefulness of COVID-19 models , 2020, Humanities and Social Sciences Communications.

[186]  Anja Thieme,et al.  Machine Learning in Mental Health , 2020, ACM Trans. Comput. Hum. Interact..

[187]  Pranjal Awasthi,et al.  Equalized odds postprocessing under imperfect group information , 2019, AISTATS.

[188]  Abolfazl Asudeh,et al.  Fair Active Learning , 2020, Expert Syst. Appl..

[189]  Yunfeng Zhang,et al.  Effect of confidence and explanation on accuracy and trust calibration in AI-assisted decision making , 2020, FAT*.

[190]  Jimeng Sun,et al.  SDE-Net: Equipping Deep Neural Networks with Uncertainty Estimates , 2020, ICML.

[191]  Michael A. Osborne,et al.  Radial Bayesian Neural Networks: Beyond Discrete Support In Large-Scale Bayesian Deep Learning , 2019, AISTATS.

[192]  Kawin Ethayarajh,et al.  Is Your Classifier Actually Biased? Measuring Fairness under Uncertainty with Bernstein Bounds , 2020, ACL.

[193]  Mihaela van der Schaar,et al.  Discriminative Jackknife: Quantifying Uncertainty in Deep Learning via Higher-Order Influence Functions , 2020, ICML.

[194]  Mani Srivastava,et al.  Rapid Trust Calibration through Interpretable and Uncertainty-Aware AI , 2020, Patterns.

[195]  A. D'Amour,et al.  Detecting Extrapolation with Local Ensembles , 2019, ICLR.

[196]  Avrim Blum,et al.  Recovering from Biased Data: Can Fairness Constraints Improve Accuracy? , 2019, FORC.

[197]  Nicholas P Jewell,et al.  Predictive Mathematical Models of the COVID-19 Pandemic: Underlying Principles and Value of Projections. , 2020, JAMA.

[198]  Pavel Izmailov,et al.  Bayesian Deep Learning and a Probabilistic Perspective of Generalization , 2020, NeurIPS.

[199]  Dmitry Vetrov,et al.  Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning , 2020, ICLR.

[200]  M. Lipsitch,et al.  Estimated Demand for US Hospital Inpatient and Intensive Care Unit Beds for Patients With COVID-19 Based on Comparisons With Wuhan and Guangzhou, China , 2020, JAMA network open.

[201]  Alice Xiang,et al.  Machine Learning Explainability for External Stakeholders , 2020, ArXiv.

[202]  Daniel G. Goldstein,et al.  How Visualizing Inferential Uncertainty Can Mislead Readers About Treatment Effects in Scientific Results , 2020, CHI.

[203]  Alexandra Chouldechova,et al.  Fairness Evaluation in Presence of Biased Noisy Labels , 2020, AISTATS.

[204]  Xiaojie Mao,et al.  Assessing algorithmic fairness with unobserved protected class using data combination , 2019, FAT*.

[205]  Fotios Petropoulos,et al.  Forecasting the novel coronavirus COVID-19 , 2020, PloS one.

[206]  Kristina Lerman,et al.  A Survey on Bias and Fairness in Machine Learning , 2019, ACM Comput. Surv..

[207]  Timnit Gebru,et al.  Datasheets for datasets , 2018, Commun. ACM.

[208]  Ankur Taly,et al.  A Multistakeholder Approach Towards Evaluating AI Transparency Mechanisms , 2021, ArXiv.

[209]  δ-CLUE: Diverse Sets of Explanations for Uncertainty Estimates , 2021, ArXiv.

[210]  Jessica Hullman,et al.  Visual Reasoning Strategies for Effect Size Judgments and Decisions , 2020, IEEE Transactions on Visualization and Computer Graphics.

[211]  José Miguel Hernández-Lobato,et al.  Getting a CLUE: A Method for Explaining Uncertainty Estimates , 2020, ICLR.