Assays of Antioxidant Capacity: Optics and Voltammetry

[1]  Ihsan Karabulut,et al.  Electrochemical Determination of the Antioxidant Capacity, Total Phenolics, and Ascorbic Acid in Fruit and Vegetables by Differential Pulse Voltammetry (DPV) with a p-Toluene Sulfonic Acid Modified Glassy Carbon Electrode (TSA/GCE) , 2023 .

[2]  G. Ziyatdinova,et al.  Modern Methods and Current Trends in the Analytical Chemistry of Flavanones , 2023, Journal of Analytical Chemistry.

[3]  P. Cayot,et al.  Optimization of a Molecularly Imprinted Polymer Synthesis for a Rapid Detection of Caffeic Acid in Wine , 2023, Foods.

[4]  Ż. Polkowska,et al.  Determination of the Major By-Products of Citrus hystrix Peel and Their Characteristics in the Context of Utilization in the Industry , 2023, Molecules.

[5]  G. Ziyatdinova,et al.  Electrochemical Characterization of the Antioxidant Properties of Medicinal Plants and Products: A Review , 2023, Molecules.

[6]  G. B. Martínez-Hernández,et al.  Effects of essential oils released from active packaging on the antioxidant system and quality of lemons during cold storage and commercialization , 2023, Scientia Horticulturae.

[7]  Sizhu Ren,et al.  Improvement in the stability and bioavailability of pumpkin lutein using β‐cyclodextrin microcapsules , 2023, Food science & nutrition.

[8]  G. Nagy,et al.  Chemically modified pencil electrodes for application in reagentless chronopotentiometric antioxidant activity measurement , 2023, Electroanalysis.

[9]  J. Seetharamappa,et al.  Green synthesis of SnO_2-β-cyclodextrin graphene oxide composite for electrochemical sensing of an antioxidant drug, alpha lipoic acid , 2023, Ionics.

[10]  M. Dusinska,et al.  Titanium Dioxide Nanoparticles Modulate Systemic Immune Response and Increase Levels of Reduced Glutathione in Mice after Seven-Week Inhalation , 2023, Nanomaterials.

[11]  R. Tzoneva,et al.  Oxidative Stress and Aging as Risk Factors for Alzheimer’s Disease and Parkinson’s Disease: The Role of the Antioxidant Melatonin , 2023, International journal of molecular sciences.

[12]  L. Yang,et al.  Evaluating the antioxidant activity of secondary metabolites of endophytic fungi from Hypericum perforatum L. by an electrochemical biosensor based on AuNPs/AC@CS composite. , 2023, Bioelectrochemistry.

[13]  Fatima Rivas,et al.  Discovery of Novel Bioactive Tanshinones and Carnosol Analogues against Breast Cancer , 2023, Cancers.

[14]  P. G. Peiretti,et al.  Phenolic Compound Profile and Antioxidant Capacity of Flax (Linum usitatissimum L.) Harvested at Different Growth Stages , 2023, Molecules.

[15]  Kirtiraj K. Gaikwad,et al.  Chitosan based antioxidant biofilm with waste Citrus limetta pomace extract and impregnated with halloysite nanotubes for food packaging , 2023, Journal of Food Measurement and Characterization.

[16]  A. Stochmal,et al.  Extract from Sea Buckthorn Seeds—A Phytochemical, Antioxidant, and Hemostasis Study; Effect of Thermal Processing on Its Chemical Content and Biological Activity In Vitro , 2023, Nutrients.

[17]  S. Di Agostino,et al.  Novel Insights into the Role of the Antioxidants in Prostate Pathology , 2023, Antioxidants.

[18]  F. Tomás-Barberán,et al.  Effect of Storage Conditions on the Stability of Polyphenols of Apple and Strawberry Purees Produced at Industrial Scale by Different Processing Techniques , 2023, Journal of agricultural and food chemistry.

[19]  M. Mikulič-Petkovšek,et al.  Biochemical Characterization of Black and Green Mutant Elderberry during Fruit Ripening , 2023, Plants.

[20]  S. Rastegar,et al.  Zebrafish: A Model Deciphering the Impact of Flavonoids on Neurodegenerative Disorders , 2023, Cells.

[21]  M. Maciążek-Jurczyk,et al.  New Synthetic Quinoline (Qui) Derivatives as Novel Antioxidants and Potential HSA’s Antioxidant Activity Modulators—Spectroscopic Studies , 2022, Molecules.

[22]  L. Mondello,et al.  HPLC-PDA/ESI-MS Analysis of Phenolic Compounds and Bioactivities of the Ethanolic Extract from Flowers of Moroccan Anacyclus clavatus , 2022, Plants.

[23]  F. Fazeli,et al.  An overview of recent advances in the detection of ascorbic acid by electrochemical techniques , 2022, Journal of Electrochemical Science and Engineering.

[24]  M. Kalinowska,et al.  Comparing the extraction methods, chemical composition, phenolic contents and antioxidant activity of edible oils from Cannabis sativa and Silybum marianu seeds , 2022, Scientific Reports.

[25]  M. Khairy,et al.  Sensitive Electrochemical Quantification of Proanthocyanidins in Grapevine (Vitis vinifera) by Utilizing Disposable Screen‐printed Carbon Electrodes , 2022, Electroanalysis.

[26]  D. Ghafoor Correlation between oxidative stress markers and cytokines in different stages of breast cancer. , 2022, Cytokine.

[27]  Maja C. Pagnacco,et al.  The Application of Alumina for Electroanalytical Determination of Gallic Acid , 2022, Electrocatalysis.

[28]  J. Hrbáč,et al.  Automated electrochemical determination of beer total antioxidant capacity employing microdialysis online-coupled with amperometry , 2022, Microchemical Journal.

[29]  Tina Vukusic,et al.  Antioxidant Capacity of Herzegovinian Wildflowers Evaluated by UV–VIS and Cyclic Voltammetry Analysis , 2022, Molecules.

[30]  D. Zielińska,et al.  An Electrochemical Determination of the Total Reducing Capacity of Wheat, Spelt, and Rye Breads , 2022, Antioxidants.

[31]  S. Maensiri,et al.  Microporous carbon in the selective electro-oxidation of molecular biomarkers: uric acid, ascorbic acid, and dopamine , 2022, RSC advances.

[32]  S. Low,et al.  Amperometric sensor using nylon-6-film-modified carbon electrode for low-cost detection of ascorbic acid , 2022, Monatshefte für Chemie - Chemical Monthly.

[33]  E. Espada-Bellido,et al.  An electrochemical alternative for evaluating the antioxidant capacity in walnut kernel extracts. , 2022, Food chemistry.

[34]  Douglas Vieira Thomaz,et al.  Redox Profiling of Selected Apulian Red Wines in a Single Minute , 2022, Antioxidants.

[35]  S. Oancea,et al.  Low-Molecular-Weight Synthetic Antioxidants: Classification, Pharmacological Profile, Effectiveness and Trends , 2022, Antioxidants.

[36]  A. Medina,et al.  Rapid Electrochemical Determination of Antioxidant Capacity Using Glassy Carbon Electrodes Modified with Copper and Polyaniline. Application to Ascorbic and Gallic Acids , 2022, Biointerface Research in Applied Chemistry.

[37]  Ihsan Karabulut,et al.  Determination of Antioxidant Properties and β-Carotene in Orange Fruits and Vegetables by an Oxidation Voltammetric Assay , 2022, Analytical Letters.

[38]  Jin-Hua Shi,et al.  Electrochemical Sensors and Biosensors for the Analysis of Tea Components: A Bibliometric Review , 2022, Frontiers in Chemistry.

[39]  M. Pohanka New uses of Melatonin as a Drug, a Review. , 2022, Current Medicinal Chemistry.

[40]  Y. Tao,et al.  A Method to Separate Two Main Antioxidants from Lepidium latifolium L. Extracts Using Online Medium Pressure Chromatography Tower and Two-Dimensional Inversion/Hydrophobic Interaction Chromatography Based on Online HPLC-DPPH Assay , 2021, Separations.

[41]  M. Skiba,et al.  Extraction of phenolic compounds from tomato pomace using choline chloride–based deep eutectic solvents , 2021, Journal of Food Measurement and Characterization.

[42]  Ilyas Yildiz,et al.  A new potentiometric PVC membrane sensor for the determination of DPPH radical scavenging activity of plant extracts. , 2021, Food chemistry.

[43]  R. A. Shalliker,et al.  Antioxidant Profiling of Ginger via Reaction Flow Chromatography , 2021, Natural Product Communications.

[44]  S. Sukhishvili,et al.  Integrating Antioxidant Functionality into Polymer Materials: Fundamentals, Strategies, and Applications. , 2021, ACS applied materials & interfaces.

[45]  B. Parsons Kinetic simulations of the effect of antioxidants on the metmyoglobin reactions with hydrogen peroxide and their relevance and application to the Trolox equivalent equivalent antioxidant assay , 2021, International Journal of Chemical Kinetics.

[46]  F. Iordache,et al.  Antioxidant Determination with the Use of Carbon-Based Electrodes , 2021, Chemosensors.

[47]  A. Waterhouse,et al.  Can Chemical Analysis Predict Wine Aging Capacity? , 2021, Foods.

[48]  Hongfu Zhang,et al.  β-carotene Rescues Busulfan Disrupted Spermatogenesis Through Elevation in Testicular Antioxidant Capability , 2021, Frontiers in Pharmacology.

[49]  I. S. Amasiatu,et al.  Antioxidant Drug Design: Historical and Recent Developments , 2021 .

[50]  D. Olszewska-Słonina,et al.  Melatonin as a powerful antioxidant , 2020, Acta pharmaceutica.

[51]  A. Bali,et al.  Design and Synthesis of Novel Anti-inflammatory/Anti-ulcer Hybrid Molecules with Antioxidant Activity. , 2020, Medicinal chemistry (Shariqah (United Arab Emirates)).

[52]  Rodolfo Mundaca-Uribe,et al.  DETERMINATION OF ANTIOXIDANT CAPACITY (ORAC) OF GREIGIA SPHACELATA AND CORRELATION WITH VOLTAMMETRIC METHODS , 2020 .

[53]  N. Lawrence,et al.  Radical Scavenging Activity of Antioxidants by Cyclic Voltammetry , 2020 .

[54]  J. Kumar,et al.  Antioxidant Activity of Synthetic Polymers of Phenolic Compounds , 2020, Polymers.

[55]  A. van den Berg,et al.  Determining the antioxidant properties of various beverages using staircase voltammetry , 2020, Heliyon.

[56]  A. Calokerinos,et al.  Antioxidant Activity and Polyphenolic Content of North Macedonian Wines , 2020, Applied Sciences.

[57]  Qiang Wang,et al.  Influences of calcium and magnesium ions on cellular antioxidant activity (CAA) determination. , 2020, Food chemistry.

[58]  R. A. Shalliker,et al.  Total Antioxidant Capacity with Peak Specificity via Reaction Flow Chromatography and the Ferric Reducing Antioxidant Power Assay , 2019, Food Analytical Methods.

[59]  M. Raeisi,et al.  Values of antioxidant activities (ABTS and DPPH) and ferric reducing and chelating powers of gamma-irradiated rosemary extract , 2019, Radiochimica Acta.

[60]  H. Gunawardena,et al.  Human plasma dynamically quenches the fluorescein at the initial point of oxygen radical absorption capacity (ORAC) assay , 2019, BMC Research Notes.

[61]  D. Stanković,et al.  Use of cyclic voltammetry to determine the antioxidant capacity of berry fruits: correlation with spectrophotometric assays , 2019, European Journal of Horticultural Science.

[62]  F. Shahidi,et al.  Critical re-evaluation of DPPH assay: Presence of pigments affects the results. , 2019, Journal of agricultural and food chemistry.

[63]  Vineeta Singh,et al.  Synthesis and Biological Evaluation of Some Novel Claisen Products of 5‐Oxo‐1‐phenylpyrrolidine‐3‐carboxylic Acid as Antimicrobial and Antioxidant Agents , 2019, ChemistrySelect.

[64]  M. Maraschin,et al.  Jaboticaba (Plinia peruviana) extract nanoemulsions: development, stability, and in vitro antioxidant activity , 2018, Drug development and industrial pharmacy.

[65]  R. Pegg,et al.  Modification of the cellular antioxidant activity (CAA) assay to study phenolic antioxidants in a Caco-2 cell line. , 2018, Food chemistry.

[66]  T. Mikami,et al.  Uric acid contributes greatly to hepatic antioxidant capacity besides protein. , 2017, Physiological research.

[67]  M. Ayaz,et al.  DPPH, ABTS free radical scavenging, antibacterial and phytochemical evaluation of crude methanolic extract and subsequent fractions of Chenopodium botrys aerial parts. , 2017, Pakistan journal of pharmaceutical sciences.

[68]  A. Setiawan,et al.  Antioxidant Assay Guided Separation of the Methanol Stem Fraction of Binahong (Anredera Cordifolia) using Cyclic Voltammetry Method , 2017 .

[69]  I. Berregi,et al.  Polyphenolic profile in cider and antioxidant power. , 2015, Journal of the science of food and agriculture.

[70]  M. Foti Use and Abuse of the DPPH(•) Radical. , 2015, Journal of agricultural and food chemistry.

[71]  Mingquan Guo,et al.  Analysis of Flavonoids in Lotus (Nelumbo nucifera) Leaves and Their Antioxidant Activity Using Macroporous Resin Chromatography Coupled with LC-MS/MS and Antioxidant Biochemical Assays , 2015, Molecules.

[72]  A. Dawidowicz,et al.  Depletion/protection of β-carotene in estimating antioxidant activity by β-carotene bleaching assay , 2015, Journal of Food Science and Technology.

[73]  R. Soumya,et al.  CUPRAC–BCS and antioxidant activity assays as reliable markers of antioxidant capacity in erythrocytes , 2015, Hematology.

[74]  K. Schaich,et al.  Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays” , 2015 .

[75]  M. Waksmundzka-hajnos,et al.  Radical Scavenging Activity of Instant Grits with Addition of Chamomile Flowers Determined by TLC–DPPH• Test and by Spectrophotometric Method , 2015 .

[76]  J. Kariuki,et al.  Effect of Extraction Method on Antioxidant Determination in Produce by Differential Pulse Voltammetry , 2014, International Journal of Electrochemical Science.

[77]  H. Budnikov,et al.  Evaluation of the antioxidant properties of spices by cyclic voltammetry , 2014, Journal of Analytical Chemistry.

[78]  N. Johns,et al.  Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers , 2013, Journal of pineal research.

[79]  V. Adam,et al.  Electrochemistry as a Tool for Studying Antioxidant Properties , 2013, International Journal of Electrochemical Science.

[80]  K. Schaich,et al.  Effects of molecular structure on kinetics and dynamics of the trolox equivalent antioxidant capacity assay with ABTS(+•). , 2013, Journal of agricultural and food chemistry.

[81]  T. Seguchi,et al.  Mechanism of antioxidant interaction on polymer oxidation by thermal and radiation ageing , 2012 .

[82]  D. Martysiak-Żurowska,et al.  A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. , 2012, Acta scientiarum polonorum. Technologia alimentaria.

[83]  Dae-Ok Kim,et al.  Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods , 2011 .

[84]  Liqin Liu,et al.  Polyphenolic compounds and antioxidant properties in mango fruits , 2011 .

[85]  P. Brat,et al.  Reexamination of the ORAC assay: effect of metal ions , 2011, Analytical and bioanalytical chemistry.

[86]  Constantin Apetrei,et al.  Carbon Paste Electrodes Made from Different Carbonaceous Materials: Application in the Study of Antioxidants , 2011, Sensors.

[87]  C. Jullian,et al.  Antioxidant activity of inclusion complexes of tea catechins with β-cyclodextrins by ORAC assays , 2010 .

[88]  Ola R. Shehab,et al.  New selenite ion-selective electrodes based on 5,10,15,20-tetrakis-(4-methoxyphenyl)-21H,23H-porphyrin-Co(II). , 2010, Journal of hazardous materials.

[89]  Liang Chen,et al.  Isolation of antioxidants from Psoralea corylifolia fruits using high-speed counter-current chromatography guided by thin layer chromatography-antioxidant autographic assay. , 2010, Journal of chromatography. A.

[90]  K. Başkan,et al.  Modified cupric reducing antioxidant capacity (CUPRAC) assay for measuring the antioxidant capacities of thiol-containing proteins in admixture with polyphenols. , 2009, Talanta.

[91]  H. Shinmoto,et al.  Development and Validation of a Microplate-based β-carotene Bleaching Assay and Comparison of Antioxidant Activity (AOA) in Several Crops Measured by β-carotene Bleaching, DPPH and ORAC Assays , 2009 .

[92]  Jace D. Everette,et al.  Comparative reaction rates of various antioxidants with ABTS radical cation. , 2009, Journal of agricultural and food chemistry.

[93]  C. O’Sullivan,et al.  Amperometric determination of ascorbic acid in real samples using a disposable screen-printed electrode modified with electrografted o-aminophenol film. , 2008, Journal of agricultural and food chemistry.

[94]  T. V. van Beek,et al.  Antioxidant activity assays on-line with liquid chromatography. , 2008, Journal of chromatography. A.

[95]  S. Navaratnam,et al.  Effect of antioxidant oxidation potential in the oxygen radical absorption capacity (ORAC) assay. , 2008, Food chemistry.

[96]  S. Criquet,et al.  ABTS assay of phenol oxidase activity in soil. , 2007, Journal of microbiological methods.

[97]  Rui Hai Liu,et al.  Cellular antioxidant activity (CAA) assay for assessing antioxidants, foods, and dietary supplements. , 2007, Journal of agricultural and food chemistry.

[98]  R. Apak,et al.  Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay. , 2007, Molecules.

[99]  L. Cisneros-Zevallos,et al.  Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts , 2006 .

[100]  H. Girault,et al.  Antioxidant redox sensors based on DNA modified carbon screen-printed electrodes. , 2006, Analytical chemistry.

[101]  B. Anders,et al.  Antioxidant capacity and content of Brassica oleracea dietary antioxidants , 2006 .

[102]  J. Rešetić,et al.  Cyclic voltammetry study of plasma antioxidant capacity – Comparison with the DPPH and TAS spectrophotometric methods , 2006 .

[103]  C. Genot,et al.  2,2-diphenyl-1-picrylhydrazyl (DPPH*) test demonstrates antiradical activity of Dorstenia psilurus and Dorstenia ciliata plant extracts. , 2003, Die Nahrung.

[104]  M. Grundman,et al.  Antioxidant strategies for Alzheimer's disease , 2002, Proceedings of the Nutrition Society.

[105]  Ľ. Heilerová,et al.  Detection of Antioxidative Activity of Plant Extracts at the DNA-Modified Screen-Printed Electrode , 2002 .

[106]  V. Böhm,et al.  Trolox Equivalent Antioxidant Capacity of Different Geometrical Isomers of α-Carotene, β-Carotene, Lycopene, and Zeaxanthin , 2002 .

[107]  G. Bartosz,et al.  Assay of total antioxidant capacity: comparison of four methods as applied to human blood plasma , 2002, Scandinavian journal of clinical and laboratory investigation.

[108]  M. Podda,et al.  Low molecular weight antioxidants and their role in skin ageing , 2001, Clinical and experimental dermatology.

[109]  H. Fernández,et al.  Synthetic antioxidants in edible oils by square-wave voltammetry on ultramicroelectrodes , 2000 .

[110]  A. Palomäki,et al.  Comparison of LDL TRAP assay to other tests of antioxidant capacity; Effect of vitamin E and lovastatin treatment , 2000, Free radical research.

[111]  R. Russell,et al.  β-Carotene and Other Carotenoids as Antioxidants , 1999 .

[112]  Aalt Bast,et al.  Analytical, Nutritional and Clinical Methods Section Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures , 1999 .

[113]  C. Rice-Evans,et al.  Antioxidant activity applying an improved ABTS radical cation decolorization assay. , 1999, Free radical biology & medicine.

[114]  J J Strain,et al.  The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": the FRAP assay. , 1996, Analytical biochemistry.

[115]  S. F. D. Rosa,et al.  Trolox equivalent antioxidant capacity of Coffea arabica L. seeds , 2022, Ciência e Agrotecnologia.

[116]  F. Raza,et al.  Synthetic berberine derivatives as potential new drugs , 2022, Brazilian Journal of Pharmaceutical Sciences.

[117]  Lun Pan,et al.  Effect of phenolic antioxidants on the thermal oxidation stability of high-energy-density fuel , 2022 .

[118]  A. Parsa,et al.  Antioxidant capacity measurement of aniline-pyrrole copolymer by FRAP assay , 2019, Revue Roumaine de Chimie.

[119]  K. Nokihara,et al.  Antioxidant Properties of Tripeptides Revealed by a Comparison of Six Different Assays , 2015 .

[120]  A. Mešić,et al.  Antioxidant properties of extracts of wild medicinal mushroom species from Croatia. , 2011, International journal of medicinal mushrooms.

[121]  I. Kereković,et al.  A flow injection biamperometric method for determination of total antioxidant capacity of alcoholic beverages using bienzymatically produced ABTS , 2007 .

[122]  A. Bast,et al.  Antioxidant capacity of reaction products limits the applicability of the Trolox Equivalent Antioxidant Capacity (TEAC) assay. , 2004, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[123]  E. Lissi,et al.  The total reactive antioxidant potential (TRAP) and total antioxidant reactivity (TAR) of Ilex paraguayensis extracts and red wine , 1996 .

[124]  F. Şahbaz,et al.  Determination of ascorbic acid in fruit and vegetables using normal polarography , 1992 .