Effect of heat transfer law on the performance of a generalized irreversible Carnot engine

In a classical endoreversible Carnot engine model, irreversibility in the form of heat resistance between the reversible Carnot cycle and its heat reservoirs is taken into account. This paper presents a generalized irreversible Carnot engine model that incorporates several internal irreversibilities, such as heat leak, friction, turbulence etc. These added irreversibilities are characterized by a constant parameter and a constant coefficient. The relation between optimal power output and efficiency is derived based on a generalized heat transfer law . The effect of heat leakage, internal irreversibility and heat transfer law on the optimal performance of the generalized irreversible heat engine is investigated.

[1]  J. Gordon,et al.  General performance characteristics of real heat engines , 1992 .

[2]  Fengrui Sun,et al.  Effect of the heat transfer law on the finite-time, exergoeconomic performance of heat engines , 1996 .

[3]  Sergio Sibilio,et al.  Recent Advances in Finite-Time Thermodynamics , 1999 .

[4]  F. Sun,et al.  The influence of heat-transfer law on the endo-reversible Carnot refrigerator , 1996 .

[5]  Fengrui Sun,et al.  Performance of a regenerative Brayton heat engine , 1996 .

[6]  Fengrui Sun,et al.  Theoretical analysis of the performance of a regenerative closed Brayton cycle with internal irreversibilities , 1997 .

[7]  Jeffrey M. Gordon,et al.  Thermodynamic modeling of reciprocating chillers , 1994 .

[8]  Lawrence S. Chen 98/00669 Influence of internal heat leak on the performance of refrigerators , 1998 .

[9]  Adrian Bejan,et al.  Theory of heat transfer-irreversible refrigeration plants , 1989 .

[10]  L. Chen,et al.  Performance analysis of an irreversible Brayton heat engine , 1997 .

[11]  黄婉康,et al.  The Formation of 1.35 nm Stacking Sequences in Heated Products of Clinoenstatites , 1993 .

[12]  A. D. Vos,et al.  Endoreversible thermodynamics of solar energy conversion , 1992 .

[13]  S. Sieniutycz,et al.  Thermodynamic Optimization of Finite-Time Processes , 2000 .

[14]  Adrian Bejan,et al.  Two design aspects of defrosting refrigerators , 1995 .

[15]  Lingen Chen,et al.  Finite Time Thermodynamic Optimization or Entropy Generation Minimization of Energy Systems , 1999 .

[16]  Selahatti̇n Göktun Coefficient of performance for an irreversible combined refrigeration cycle , 1996 .

[17]  J. M. Gordon Observations on efficiency of heat engines operating at maximum power , 1990 .

[18]  H. Yavuz,et al.  Finite-time thermodynamic analysis of a radiative heat engine with internal irreversibility , 1994 .

[19]  Fengrui Sun,et al.  Heat transfer effect on the specific cooling load of refrigerators , 1996 .

[20]  Sanford Klein Design Considerations for Refrigeration Cycles , 1992 .

[21]  Michel Feidt Optimisation d'un cycle de Brayton moteur en contact avec des capacités thermiques finies , 1996 .

[22]  Santiago Velasco,et al.  Optimum performance of a regenerative Brayton thermal cycle , 1997 .

[23]  Fengrui Sun,et al.  Finite-time thermodynamic performance of an isentropic closed regenerated Brayton refrigeration cycle , 1997 .

[24]  Lingen Chen,et al.  A generalized model of a real refrigerator and its performance , 1997 .

[25]  A. Bejan Shape and Structure, from Engineering to Nature , 2000 .

[26]  L. Chen,et al.  A generalised model of a real heat engine and its performance , 1996 .

[27]  A. D. Vos,et al.  Efficiency of some heat engines at maximum-power conditions , 1985 .

[28]  M. Rubin Optimal configuration of a class of irreversible heat engines. II , 1979 .

[29]  A. Bejan,et al.  Entropy Generation Through Heat and Fluid Flow , 1983 .

[30]  A. Bejan Theory of heat transfer-irreversible power plants , 1988 .

[31]  Chih Wu,et al.  Finite-time thermodynamic analysis of a Carnot engine with internal irreversibility , 1992 .

[32]  Lingen Chen,et al.  General performance characteristics of a finite-speed Carnot refrigerator , 1996 .

[33]  Fengrui Sun,et al.  Influence of heat transfer law on the performance of a Carnot engine , 1997 .

[34]  A. Bejan Advanced Engineering Thermodynamics , 1988 .

[35]  Fengrui Sun,et al.  Optimization of the specific rate of refrigeration in combined refrigeration cycles , 1995 .

[36]  Fengrui Sun,et al.  Influence of internal heat leak on the power versus efficiency characteristics of heat engines , 1997 .

[37]  Lingen Chen,et al.  Steady flow combined refrigeration cycle performance with heat leak , 1997 .

[38]  W. Z. Chen,et al.  Study on optimal performance and working temperatures of endoreversible forward and reverse carnot cycles , 1995 .

[39]  John W. Mitchell,et al.  Optimum Heat Power Cycles for Specified Boundary Conditions , 1991 .

[40]  A. Bejan Entropy generation minimization: The new thermodynamics of finite-size devices and finite-time processes , 1996 .