Ancient Aqueous Environments at Endeavour Crater, Mars

Opportunity has investigated in detail rocks on the rim of the Noachian age Endeavour crater, where orbital spectral reflectance signatures indicate the presence of Fe+3-rich smectites. The signatures are associated with fine-grained, layered rocks containing spherules of diagenetic or impact origin. The layered rocks are overlain by breccias, and both units are cut by calcium sulfate veins precipitated from fluids that circulated after the Endeavour impact. Compositional data for fractures in the layered rocks suggest formation of Al-rich smectites by aqueous leaching. Evidence is thus preserved for water-rock interactions before and after the impact, with aqueous environments of slightly acidic to circum-neutral pH that would have been more favorable for prebiotic chemistry and microorganisms than those recorded by younger sulfate-rich rocks at Meridiani Planum.

[1]  J. Poesen,et al.  Estimating the effect of tree uprooting on variation of soil horizon depth by confronting pedogenetic simulations to measurements in a Belgian loess area , 2013 .

[2]  J. Catalano Thermodynamic and mass balance constraints on iron‐bearing phyllosilicate formation and alteration pathways on early Mars , 2013 .

[3]  N. Artemieva,et al.  Ries crater and suevite revisited—Observations and modeling Part I: Observations , 2013 .

[4]  T. Parker,et al.  Hydrated minerals on Endeavour Crater's rim and interior, and surrounding plains: New insights from CRISM data , 2012 .

[5]  B. Ehlmann,et al.  Mineralogy and chemistry of altered Icelandic basalts: Application to clay mineral detection and understanding aqueous environments on Mars , 2012 .

[6]  K. Weber,et al.  Rinded iron‐oxide concretions: hallmarks of altered siderite masses of both early and late diagenetic origin , 2012 .

[7]  S. McLennan,et al.  Pedogenic hematitic concretions from the Triassic New Haven Arkose, Connecticut: Implications for understanding Martian diagenetic processes , 2012 .

[8]  R. E. Arvidson,et al.  Ancient Impact and Aqueous Processes at Endeavour Crater, Mars , 2012, Science.

[9]  John P. Grotzinger,et al.  Sedimentary geology of mars , 2012 .

[10]  Jean-Pierre Bibring,et al.  Subsurface water and clay mineral formation during the early history of Mars , 2011, Nature.

[11]  P. Fralick,et al.  Sudbury impact layer in the western Lake Superior region , 2011 .

[12]  J. Lambert,et al.  Clays and Clay Minerals , 2011 .

[13]  D. Ming,et al.  Visible and Near-IR Reflectance Spectra of Mars Analogue Materials Under Arid Conditions for Interpretation of Martian Surface Mineralogy , 2011 .

[14]  Jeffrey R. Johnson,et al.  Silica-rich deposits and hydrated minerals at Gusev Crater, Mars: Vis-NIR spectral characterization and regional mapping , 2010 .

[15]  A. McEwen,et al.  Phyllosilicates and sulfates at Endeavour Crater, Meridiani Planum, Mars , 2009 .

[16]  Raymond E. Arvidson,et al.  Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer , 2009 .

[17]  K. Emmerich,et al.  Clay profiling: The classification of montmorillonites , 2009 .

[18]  K. Emmerich,et al.  A comprehensive characterization of dioctahedral smectites , 2009 .

[19]  S. Taylor,et al.  Planetary Crusts: Their Composition, Origin and Evolution , 2009 .

[20]  R. Gellert,et al.  Quantitative in situ determination of hydration of bright high‐sulfate Martian soils , 2008 .

[21]  M. Stich,et al.  Models of iron oxide concretion formation: field, numerical, and laboratory comparisons , 2007 .

[22]  Raymond E. Arvidson,et al.  Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on Mars Reconnaissance Orbiter (MRO) , 2007 .

[23]  Planetary Crusts Planetary Crusts , 2007 .

[24]  William H. Farrand,et al.  Rocks of the Columbia Hills , 2006 .

[25]  Nathalie A. Cabrol,et al.  Overview of the Microscopic Imager Investigation during Spirit's first 450 sols in Gusev crater , 2006 .

[26]  R. E. Arvidson,et al.  Phyllosilicates on Mars and implications for early martian climate , 2005, Nature.

[27]  Steven W. Squyres,et al.  Sedimentary rocks at Meridiani Planum: Origin, diagenesis, and implications for life on Mars , 2005 .

[28]  A. Knoll,et al.  An astrobiological perspective on Meridiani Planum , 2005 .

[29]  Amitabha Ghosh,et al.  An integrated view of the chemistry and mineralogy of martian soils , 2005, Nature.

[30]  D. Ming,et al.  Localization and Physical Properties Experiments Conducted by Spirit at Gusev Crater , 2004, Science.

[31]  Raul A. Romero,et al.  Athena Mars rover science investigation , 2003 .

[32]  Miles J. Johnson,et al.  Athena Microscopic Imager investigation , 2003 .

[33]  Á. F. Cano,et al.  Baseline studies of the clay minerals society source clays: Chemical analyses of major elements , 2001 .

[34]  S. Brantley,et al.  Chemical weathering rates of silicate minerals , 1995 .

[35]  B. Hapke Theory of reflectance and emittance spectroscopy , 1993 .

[36]  R. E. Wilson,et al.  Recent chemical weathering of basalts , 1992 .

[37]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[38]  G. Graup Terrestrial chondrules, glass spherules and accretionary lapilli from the suevite, Ries Crater, Germany , 1981 .

[39]  G. Friedman,et al.  Sedimentology , 1972, Nature.

[40]  A. Williamon,et al.  Observations , 1966, Performing Music Research.