Mixed lump-kink solutions to the BKP equation

Abstract By using the Hirota bilinear form of the (2+1)-dimensional BKP equation, ten classes of interaction solutions between lumps and kinks are constructed through Maple symbolic computations beginning with a linear combination ansatz. The resulting lump-kink solutions are reduced to lumps and kinks when the exponential function and the quadratic function disappears, respectively. Analyticity is naturally guaranteed for the presented lump-kink solution if the constant term is chosen to be positive.

[1]  Xiang Gu,et al.  Hirota bilinear equations with linear subspaces of hyperbolic and trigonometric function solutions , 2013, Appl. Math. Comput..

[2]  Khaled A. Gepreel,et al.  Exact solutions for nonlinear integral member of ​ ​ Kadomtsev-Petviashvili hierarchy differential equations using the modified (w/g)- expansion method , 2016, Comput. Math. Appl..

[3]  Athanassios S. Fokas,et al.  Important developments in soliton theory , 1993 .

[4]  John D. Gibbon,et al.  A new hierarchy of Korteweg–de Vries equations , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[5]  J. Satsuma,et al.  Two‐dimensional lumps in nonlinear dispersive systems , 1979 .

[6]  Wenxiu Ma,et al.  A multiple exp-function method for nonlinear differential equations and its application , 2010, 1010.3324.

[7]  Barbara Abraham-Shrauner,et al.  New origins of hidden symmetries for partial differential equations , 2009 .

[8]  P. Caudrey,et al.  The inverse problem for the third order equation uxxx + q(x)ux + r(x)u = −iζ3u , 1980 .

[9]  Jian-Ping Yu,et al.  Study of lump solutions to dimensionally reduced generalized KP equations , 2017 .

[10]  Alfred Ramani,et al.  Are all the equations of the Kadomtsev–Petviashvili hierarchy integrable? , 1986 .

[11]  Wenxiu Ma,et al.  A transformed rational function method and exact solutions to the 3+1 dimensional Jimbo–Miwa equation , 2009, 0903.5337.

[12]  Sha-Sha Yuan,et al.  Generalized Darboux transformation and rogue wave solution of the coherently-coupled nonlinear Schrödinger system , 2016 .

[13]  M. Jimbo,et al.  Solitons and Infinite Dimensional Lie Algebras , 1983 .

[14]  S. Sawada,et al.  A Method for Finding N-Soliton Solutions of the KdV and KdV-Like Equation , 1974 .

[15]  Yi Zhang,et al.  Rational solutions to a KdV-like equation , 2015, Appl. Math. Comput..

[16]  Ljudmila A. Bordag,et al.  Two-dimensional solitons of the Kadomtsev-Petviashvili equation and their interaction , 1977 .

[17]  Wenxiu Ma,et al.  Solving the Korteweg-de Vries equation by its bilinear form: Wronskian solutions , 2004, nlin/0503001.

[18]  Wen-Xiu Ma,et al.  Linear superposition principle of hyperbolic and trigonometric function solutions to generalized bilinear equations , 2016, Comput. Math. Appl..

[19]  Huanhe Dong,et al.  The new integrable symplectic map and the symmetry of integrable nonlinear lattice equation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[20]  Min Chen,et al.  Direct search for exact solutions to the nonlinear Schrödinger equation , 2009, Appl. Math. Comput..

[21]  Yi Zhang,et al.  Soliton solution to BKP equation in Wronskian form , 2013, Appl. Math. Comput..

[22]  Zhenyun Qin,et al.  Lump solutions to dimensionally reduced $$\varvec{p}$$p-gKP and $$\varvec{p}$$p-gBKP equations , 2016 .

[23]  Shou-Ting Chen,et al.  Generalized double Casoratian solutions to the four-potential isospectral Ablowitz-Ladik equation , 2013, Commun. Nonlinear Sci. Numer. Simul..

[24]  David J. Kaup,et al.  On the Inverse Scattering Problem for Cubic Eigenvalue Problems of the Class ψxxx + 6Qψx + 6Rψ = λψ , 1980 .

[25]  P. Caudrey,et al.  Memories of Hirota’s method: application to the reduced Maxwell–Bloch system in the early 1970s† , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Qiu-Lan Zhao,et al.  Two integrable lattice hierarchies and their respective Darboux transformations , 2013, Appl. Math. Comput..

[27]  Abdul-Majid Wazwaz,et al.  New (3$$\varvec{+}$$+1)-dimensional equations of Burgers type and Sharma–Tasso–Olver type: multiple-soliton solutions , 2017 .

[28]  Huanhe Dong,et al.  Rational solutions and lump solutions to the generalized (3+1)-dimensional Shallow Water-like equation , 2017, Comput. Math. Appl..

[29]  C. S. Gardner,et al.  Method for solving the Korteweg-deVries equation , 1967 .

[30]  広田 良吾,et al.  The direct method in soliton theory , 2004 .

[31]  Pierre Gaillard,et al.  Fredholm and Wronskian representations of solutions to the KPI equation and multi-rogue waves , 2016 .

[32]  Masaki Kashiwara,et al.  KP Hierarchies of Orthogonal and Symplectic Type–Transformation Groups for Soliton Equations VI– , 1981 .

[33]  R. Hirota Exact solution of the Korteweg-deVries equation for multiple collision of solitons , 1971 .

[34]  Ryogo Hirota,et al.  A New Form of Bäcklund Transformations and Its Relation to the Inverse Scattering Problem , 1974 .

[35]  Wenxiu Ma,et al.  Bilinear Equations and Resonant Solutions Characterized by Bell Polynomials , 2013 .

[36]  Xin-Yue Li,et al.  A Bargmann system and the involutive solutions associated with a new 4-order lattice hierarchy , 2016 .

[37]  Wen-Xiu Ma,et al.  Computers and Mathematics with Applications Linear Superposition Principle Applying to Hirota Bilinear Equations , 2022 .

[38]  Kenji Imai,et al.  DROMION AND LUMP SOLUTIONS OF THE ISHIMORI-I EQUATION , 1997 .

[39]  J. Nimmo,et al.  On the combinatorics of the Hirota D-operators , 1996, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[40]  Jingyuan Yang,et al.  Lump solutions to the BKP equation by symbolic computation , 2016 .

[41]  Jian-Ping Yu,et al.  Lump solutions to dimensionally reduced Kadomtsev–Petviashvili-like equations , 2017 .

[42]  Wen-Xiu Ma,et al.  Lump-type solutions to nonlinear differential equations derived from generalized bilinear equations , 2016 .

[43]  J. Nimmo,et al.  Lump solutions of the BKP equation , 1990 .

[44]  Boris Konopelchenko,et al.  The AKNS hierarchy as symmetry constraint of the KP hierarchy , 1991 .

[45]  Wenxiu Ma,et al.  Trilinear equations, Bell polynomials, and resonant solutions , 2013 .

[46]  Wenxiu Ma,et al.  Lump solutions to the Kadomtsev–Petviashvili equation , 2015 .

[47]  Wen-Xiu Ma,et al.  Lump solutions to the ($$\mathbf 2+1 $$2+1)-dimensional Sawada–Kotera equation , 2017 .

[48]  P. Clarkson,et al.  Solitons, Nonlinear Evolution Equations and Inverse Scattering: References , 1991 .

[49]  Margaret Nichols Trans , 2015, De-centering queer theory.

[50]  Wenxiu Ma,et al.  Rational solutions of the Toda lattice equation in Casoratian form , 2004 .

[51]  J. Nimmo,et al.  Soliton solutions of the Korteweg-de Vries and Kadomtsev-Petviashvili equations: The wronskian technique , 1983 .

[52]  Andrew G. Glen,et al.  APPL , 2001 .

[53]  S. Novikov,et al.  Theory of Solitons: The Inverse Scattering Method , 1984 .

[54]  Wenxiu Ma,et al.  Bilinear equations, Bell polynomials and linear superposition principle , 2013 .

[55]  David J. Kaup,et al.  The lump solutions and the Bäcklund transformation for the three‐dimensional three‐wave resonant interaction , 1981 .

[56]  Xi-Xiang Xu,et al.  A deformed reduced semi-discrete Kaup-Newell equation, the related integrable family and Darboux transformation , 2015, Appl. Math. Comput..

[57]  Zhenhui Xu,et al.  Rogue wave for the (2+1)-dimensional Kadomtsev-Petviashvili equation , 2014, Appl. Math. Lett..