Proteus mirabilis - analysis of a concealed source of carbapenemases and development of a diagnostic algorithm for detection.

[1]  S. Göttig,et al.  Emergence of Tn1999.7, a New Transposon in blaOXA-48-Harboring Plasmids Associated with Increased Plasmid Stability , 2022, Antimicrobial agents and chemotherapy.

[2]  J. Vila,et al.  Hidden dissemination of carbapenem-susceptible OXA-48-producing Proteus mirabilis. , 2022, The Journal of antimicrobial chemotherapy.

[3]  T. Kramer,et al.  High antimicrobial resistance in urinary tract infections in male outpatients in routine laboratory data, Germany, 2015 to 2020 , 2022, Euro surveillance : bulletin Europeen sur les maladies transmissibles = European communicable disease bulletin.

[4]  E. Bille,et al.  High Prevalence of OXA-23 Carbapenemase-Producing Proteus mirabilis among Amoxicillin-Clavulanate-Resistant Isolates in France , 2021, Antimicrobial agents and chemotherapy.

[5]  A. Hamprecht,et al.  Detection of Multidrug-Resistant Enterobacterales—From ESBLs to Carbapenemases , 2021, Antibiotics.

[6]  J. Hrabák,et al.  Evidence of an epidemic spread of KPC-producing Enterobacterales in Czech hospitals , 2021, Scientific Reports.

[7]  A. Hamprecht,et al.  Systematic Comparison of Three Commercially Available Combination Disc Tests and the Zinc-Supplemented Carbapenem Inactivation Method (zCIM) for Carbapenemase Detection in Enterobacterales Isolates , 2021, Journal of clinical microbiology.

[8]  S. Göttig,et al.  OXA-484, an OXA-48-Type Carbapenem-Hydrolyzing Class D β-Lactamase From Escherichia coli , 2021, Frontiers in Microbiology.

[9]  G. Cuzon,et al.  A single Proteus mirabilis lineage from human and animal sources: a hidden reservoir of OXA-23 or OXA-58 carbapenemases in Enterobacterales , 2020, Scientific Reports.

[10]  T. Naas,et al.  Genetics of Acquired Antibiotic Resistance Genes in Proteus spp. , 2020, Frontiers in Microbiology.

[11]  S. Göttig,et al.  Comparison of nine different selective agars for the detection of carbapenemase-producing Enterobacterales (CPE) , 2020, European Journal of Clinical Microbiology & Infectious Diseases.

[12]  S. Gatermann,et al.  Comparison of five methods for detection of carbapenemases in Enterobacterales with proposal of a new algorithm. , 2019, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[13]  A. Hamprecht,et al.  Rapid detection of OXA-48-like, KPC, NDM, and VIM carbapenemases in Enterobacterales by a new multiplex immunochromatographic test , 2018, European Journal of Clinical Microbiology & Infectious Diseases.

[14]  Yirong Li,et al.  The Simplified Carbapenem Inactivation Method (sCIM) for Simple and Accurate Detection of Carbapenemase-Producing Gram-Negative Bacilli , 2018, Front. Microbiol..

[15]  S. Göttig,et al.  Multiplex Immunochromatographic Detection of OXA-48, KPC, and NDM Carbapenemases: Impact of Inoculum, Antibiotics, and Agar , 2018, Journal of Clinical Microbiology.

[16]  R. Thomson,,et al.  Modified Carbapenem Inactivation Method for Phenotypic Detection of Carbapenemase Production among Enterobacteriaceae , 2017, Journal of Clinical Microbiology.

[17]  S. Gatermann,et al.  Dissemination of blaOXA-58 in Proteus mirabilis isolates from Germany , 2017, The Journal of antimicrobial chemotherapy.

[18]  S. Gatermann,et al.  Comparison of Phenotypic Tests and an Immunochromatographic Assay and Development of a New Algorithm for Detection of OXA-48-like Carbapenemases , 2016, Journal of Clinical Microbiology.

[19]  A. Corso,et al.  Simplified Protocol for Carba NP Test for Enhanced Detection of Carbapenemase Producers Directly from Bacterial Cultures , 2015, Journal of Clinical Microbiology.

[20]  P. Nordmann,et al.  Temocillin and piperacillin/tazobactam resistance by disc diffusion as antimicrobial surrogate markers for the detection of carbapenemase-producing Enterobacteriaceae in geographical areas with a high prevalence of OXA-48 producers. , 2014, The Journal of antimicrobial chemotherapy.

[21]  D. Paterson,et al.  Identification and molecular characterisation of New Delhi metallo-β-lactamase-1 (NDM-1)- and NDM-6-producing Enterobacteriaceae from New Zealand hospitals. , 2012, International journal of antimicrobial agents.

[22]  Chi-Yu Chen,et al.  Proteus mirabilis urinary tract infection and bacteremia: risk factors, clinical presentation, and outcomes. , 2012, Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi.

[23]  D. Warren,et al.  Detection of KPC-2 in a Clinical Isolate of Proteus mirabilis and First Reported Description of Carbapenemase Resistance Caused by a KPC β-Lactamase in P. mirabilis , 2008, Journal of Clinical Microbiology.

[24]  A. Vatopoulos,et al.  Emergence of Proteus mirabilis carrying the blaVIM‐1 metallo‐β‐lactamase gene , 2006 .

[25]  N. Woodford,et al.  Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. , 2006, International journal of antimicrobial agents.

[26]  J. Mylotte,et al.  Epidemiology of bloodstream infection in nursing home residents: evaluation in a large cohort from multiple homes. , 2002, Clinical Infectious Diseases.