Dielectric Boundary Forces in Numerical Poisson-Boltzmann Methods: Theory and Numerical Strategies.

Continuum modeling of electrostatic interactions based upon the numerical solutions of the Poisson-Boltzmann equation has been widely adopted in biomolecular applications. To extend their applications to molecular dynamics and energy minimization, robust and efficient methodologies to compute solvation forces must be developed. In this study, we have first reviewed the theory for the computation of dielectric boundary forces based on the definition of the Maxwell stress tensor. This is followed by a new formulation of the dielectric boundary force suitable for the finite-difference Poisson-Boltzmann methods. We have validated the new formulation with idealized analytical systems and realistic molecular systems.

[1]  Ray Luo,et al.  Accelerated Poisson–Boltzmann calculations for static and dynamic systems , 2002, J. Comput. Chem..

[2]  H. Scheraga,et al.  A fast adaptive multigrid boundary element method for macromolecular electrostatic computations in a solvent , 1997 .

[3]  Ray Luo,et al.  Quantitative analysis of Poisson-Boltzmann implicit solvent in molecular dynamics. , 2010, Physical chemistry chemical physics : PCCP.

[4]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation II. Refinement at solvent‐accessible surfaces in biomolecular systems , 2000 .

[5]  Ray Luo,et al.  Performance of Nonlinear Finite-Difference Poisson-Boltzmann Solvers. , 2010, Journal of chemical theory and computation.

[6]  Donald Bashford,et al.  An Object-Oriented Programming Suite for Electrostatic Effects in Biological Molecules , 1997, ISCOPE.

[7]  R. Zauhar,et al.  The rigorous computation of the molecular electric potential , 1988 .

[8]  E. M. Lifshitz,et al.  Electrodynamics of continuous media , 1961 .

[9]  S Subramaniam,et al.  Computation of molecular electrostatics with boundary element methods. , 1997, Biophysical journal.

[10]  J. Andrew McCammon,et al.  Solving the finite‐difference non‐linear Poisson–Boltzmann equation , 1992 .

[11]  Kim A. Sharp,et al.  Incorporating solvent and ion screening into molecular dynamics using the finite‐difference Poisson–Boltzmann method , 1991 .

[12]  B. Honig,et al.  Classical electrostatics in biology and chemistry. , 1995, Science.

[13]  H. Zhou,et al.  Boundary element solution of macromolecular electrostatics: interaction energy between two proteins. , 1993, Biophysical journal.

[14]  R. Zauhar,et al.  The incorporation of hydration forces determined by continuum electrostatics into molecular mechanics simulations , 1991 .

[15]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[16]  Nathan A. Baker,et al.  Solvation forces on biomolecular structures: A comparison of explicit solvent and Poisson–Boltzmann models , 2004, J. Comput. Chem..

[17]  Barry Honig,et al.  Extending the Applicability of the Nonlinear Poisson−Boltzmann Equation: Multiple Dielectric Constants and Multivalent Ions† , 2001 .

[18]  Enrico O. Purisima,et al.  A simple yet accurate boundary element method for continuum dielectric calculations , 1995, J. Comput. Chem..

[19]  Nathan A. Baker,et al.  Solvent reaction field potential inside an uncharged globular protein: a bridge between implicit and explicit solvent models? , 2007, The Journal of chemical physics.

[20]  Ruhong Zhou,et al.  Poisson−Boltzmann Analytical Gradients for Molecular Modeling Calculations , 1999 .

[21]  Benzhuo Lu,et al.  Computation of electrostatic forces between solvated molecules determined by the Poisson-Boltzmann equation using a boundary element method. , 2005, The Journal of chemical physics.

[22]  S. Sriharan,et al.  The fast multipole boundary element method for molecular electrostatics: An optimal approach for large systems , 1995, J. Comput. Chem..

[23]  B. Honig,et al.  A rapid finite difference algorithm, utilizing successive over‐relaxation to solve the Poisson–Boltzmann equation , 1991 .

[24]  Alexander A. Rashin,et al.  Hydration phenomena, classical electrostatics, and the boundary element method , 1990 .

[25]  J. A. McCammon,et al.  Solving the finite difference linearized Poisson‐Boltzmann equation: A comparison of relaxation and conjugate gradient methods , 1989 .

[26]  Ray Luo,et al.  Achieving Energy Conservation in Poisson-Boltzmann Molecular Dynamics: Accuracy and Precision with Finite-Difference Algorithms. , 2009, Chemical physics letters.

[27]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[28]  Ray Luo,et al.  On removal of charge singularity in Poisson-Boltzmann equation. , 2009, The Journal of chemical physics.

[29]  Klaus Schulten,et al.  Molecular Dynamics Simulations in Heterogeneous Dielectrica and Debye-Hückel Media - Application to the Protein Bovine Pancreatic Trypsin Inhibitor , 1992 .

[30]  D. Case,et al.  Generalized born models of macromolecular solvation effects. , 2000, Annual review of physical chemistry.

[31]  Nathan A. Baker,et al.  Adaptive multilevel finite element solution of the Poisson–Boltzmann equation I. Algorithms and examples , 2000 .

[32]  R. Zauhar,et al.  A new method for computing the macromolecular electric potential. , 1985, Journal of molecular biology.

[33]  L. R. Scott,et al.  Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian dynamics program , 1995 .

[34]  Harold A. Scheraga,et al.  A combined iterative and boundary-element approach for solution of the nonlinear Poisson-Boltzmann equation , 1992 .

[35]  B. Roux,et al.  Implicit solvent models. , 1999, Biophysical chemistry.

[36]  A. Rashin Electrostatics of ion-ion interactions in solution , 1989 .

[37]  M K Gilson,et al.  Theory of electrostatic interactions in macromolecules. , 1995, Current opinion in structural biology.

[38]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[39]  Richard A. Friesner,et al.  Numerical solution of the Poisson–Boltzmann equation using tetrahedral finite‐element meshes , 1997 .

[40]  J Andrew McCammon,et al.  Electrostatic Free Energy and Its Variations in Implicit Solvent Models , 2022 .

[41]  Benzhuo Lu,et al.  Order N algorithm for computation of electrostatic interactions in biomolecular systems , 2006, Proceedings of the National Academy of Sciences.

[42]  Mark A Olson,et al.  Evaluation of Poisson solvation models using a hybrid explicit/implicit solvent method. , 2005, The journal of physical chemistry. B.

[43]  H. Berendsen,et al.  The electric potential of a macromolecule in a solvent: A fundamental approach , 1991 .

[44]  Marcia O. Fenley,et al.  Fast Boundary Element Method for the Linear Poisson-Boltzmann Equation , 2002 .

[45]  Benzhuo Lu,et al.  Improved Boundary Element Methods for Poisson-Boltzmann Electrostatic Potential and Force Calculations. , 2007, Journal of chemical theory and computation.

[46]  Ray Luo,et al.  A Poisson–Boltzmann dynamics method with nonperiodic boundary condition , 2003 .

[47]  Emil Alexov,et al.  Rapid grid‐based construction of the molecular surface and the use of induced surface charge to calculate reaction field energies: Applications to the molecular systems and geometric objects , 2002, J. Comput. Chem..

[48]  Michael Feig,et al.  Extending the horizon: towards the efficient modeling of large biomolecular complexes in atomic detail , 2006 .

[49]  J. A. McCammon,et al.  Calculating electrostatic forces from grid‐calculated potentials , 1990 .

[50]  C. Brooks,et al.  Balancing solvation and intramolecular interactions: toward a consistent generalized Born force field. , 2006, Journal of the American Chemical Society.

[51]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[52]  Nathan A. Baker,et al.  Improving implicit solvent simulations: a Poisson-centric view. , 2005, Current opinion in structural biology.

[53]  Ray Luo,et al.  How well does Poisson-Boltzmann implicit solvent agree with explicit solvent? A quantitative analysis. , 2006, The journal of physical chemistry. B.

[54]  Stephen C. Harvey,et al.  Finite element approach to the electrostatics of macromolecules with arbitrary geometries , 1993, J. Comput. Chem..

[55]  Kim A. Sharp,et al.  Electrostatic interactions in macromolecules , 1994 .

[56]  Peijuan Zhu,et al.  Implementation and testing of stable, fast implicit solvation in molecular dynamics using the smooth‐permittivity finite difference Poisson–Boltzmann method , 2004, J. Comput. Chem..

[57]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[58]  J. Andrew McCammon,et al.  Computation of electrostatic forces on solvated molecules using the Poisson-Boltzmann equation , 1993 .

[59]  J. Tomasi,et al.  Electrostatic interaction of a solute with a continuum. A direct utilizaion of AB initio molecular potentials for the prevision of solvent effects , 1981 .

[60]  Michael J. Holst,et al.  Multigrid solution of the Poisson—Boltzmann equation , 1992, J. Comput. Chem..

[61]  Ray Luo,et al.  Roles of boundary conditions in DNA simulations: analysis of ion distributions with the finite-difference Poisson-Boltzmann method. , 2009, Biophysical journal.

[62]  Dexuan Xie,et al.  A new minimization protocol for solving nonlinear Poisson–Boltzmann mortar finite element equation , 2007 .

[63]  S. Subramaniam,et al.  Protein electrostatics: rapid multigrid-based Newton algorithm for solution of the full nonlinear Poisson-Boltzmann equation. , 1994, Journal of biomolecular structure & dynamics.

[64]  J. Milovich,et al.  Solution of the nonlinear Poisson-Boltzmann equation using pseudo-transient continuation and the finite element method. , 2002, Journal of colloid and interface science.

[65]  B. J. Yoon,et al.  A boundary element method for molecular electrostatics with electrolyte effects , 1990 .

[66]  R Abagyan,et al.  Rapid boundary element solvation electrostatics calculations in folding simulations: successful folding of a 23-residue peptide. , 2001, Biopolymers.

[67]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[68]  Ray Luo,et al.  Assessment of linear finite‐difference Poisson–Boltzmann solvers , 2010, J. Comput. Chem..

[69]  B. J. Yoon,et al.  Computation of the electrostatic interaction energy between a protein and a charged surface , 1992 .

[70]  J. Andrew Grant,et al.  A smooth permittivity function for Poisson–Boltzmann solvation methods , 2001, J. Comput. Chem..

[71]  Michael J. Holst,et al.  The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..

[72]  W. Im,et al.  Continuum solvation model: Computation of electrostatic forces from numerical solutions to the Poisson-Boltzmann equation , 1998 .

[73]  Douglas A. Lauffenburger,et al.  NUMERICAL SOLUTION OF THE NONLINEAR POISSON-BOLTZMANN EQUATION FOR A MEMBRANE-ELECTROLYTE SYSTEM , 1994 .

[74]  Zhilin Li,et al.  The Immersed Interface Method: Numerical Solutions of PDEs Involving Interfaces and Irregular Domains (Frontiers in Applied Mathematics) , 2006 .

[75]  P. Koehl Electrostatics calculations: latest methodological advances. , 2006, Current opinion in structural biology.

[76]  C. Brooks,et al.  Peptide and protein folding and conformational equilibria: theoretical treatment of electrostatics and hydrogen bonding with implicit solvent models. , 2005, Advances in protein chemistry.