Heralded generation of maximal entanglement in any dimension via incoherent coupling to thermal baths

We present a scheme for dissipatively generating maximal entanglement in a heralded manner. Our setup requires incoherent interactions with two thermal baths at different temperatures, but no source of work or control. A pair of(d+1)-dimensional quantum systems is first driven to an entangled steady state by the temperature gradient, and maximal entanglement in dimensiondcan then be heralded via local filters. We discuss experimental prospects considering an implementation in superconducting systems.

[1]  Daniel Sank,et al.  Fast accurate state measurement with superconducting qubits. , 2014, Physical review letters.

[2]  L. Frunzio,et al.  Simultaneous Monitoring of Fluxonium Qubits in a Waveguide , 2016, Physical Review Applied.

[3]  Paul Skrzypczyk,et al.  How small can thermal machines be? The smallest possible refrigerator. , 2009, Physical review letters.

[4]  E. Sudarshan,et al.  Completely Positive Dynamical Semigroups of N Level Systems , 1976 .

[5]  V. Giovannetti,et al.  Mediated Homogenization , 2007, 0708.2657.

[6]  P. Macha,et al.  Realization of a binary-outcome projection measurement of a three-level superconducting quantum system , 2015, 1510.08214.

[7]  N. S. Barnett,et al.  Private communication , 1969 .

[8]  F. Nori,et al.  Microwave photonics with superconducting quantum circuits , 2017, 1707.02046.

[9]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[10]  Christine A Muschik,et al.  Entanglement generated by dissipation and steady state entanglement of two macroscopic objects. , 2010, Physical review letters.

[11]  J. Eisert,et al.  Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling , 2012, 1210.0665.

[12]  Pierre Rouchon,et al.  Observing a quantum Maxwell demon at work , 2017, Proceedings of the National Academy of Sciences.

[13]  Aashish A. Clerk,et al.  Quantum heat engine based on photon-assisted Cooper pair tunneling , 2015, 1512.02165.

[14]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[15]  Entanglement induced by a single-mode heat environment , 2001, quant-ph/0109052.

[16]  R. Bowler,et al.  Dissipative production of a maximally entangled steady state of two quantum bits , 2013, Nature.

[17]  Marcus Huber,et al.  Autonomous quantum refrigerator in a circuit QED architecture based on a Josephson junction , 2016, 1607.05218.

[18]  Mauro Antezza,et al.  Steady entanglement out of thermal equilibrium , 2013, 1304.2864.

[19]  Jens Koch,et al.  Coupling superconducting qubits via a cavity bus , 2007, Nature.

[20]  R. J. Schoelkopf,et al.  Resolving photon number states in a superconducting circuit , 2007, Nature.

[21]  F. Tacchino,et al.  Steady State Entanglement beyond Thermal Limits. , 2017, Physical review letters.

[22]  G. Milburn,et al.  Entanglement in the steady state of a collective-angular-momentum (Dicke) model , 2002 .

[23]  Mauro Antezza,et al.  Creation and protection of entanglement in systems out of thermal equilibrium , 2013, 1310.8081.

[24]  Lorenza Viola,et al.  Steady-state entanglement by engineered quasi-local Markovian dissipation: Hamiltonian-assisted and conditional stabilization , 2013, Quantum Inf. Comput..

[25]  M. Znidaric Entanglement in stationary nonequilibrium states at high energies , 2011, 1112.4415.

[26]  Markus Tiersch,et al.  Quantum transport efficiency and Fourier's law. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  A. Sørensen,et al.  Driving two atoms in an optical cavity into an entangled steady state using engineered decay , 2011, 1110.1024.

[28]  R. Schoelkopf,et al.  Coherent suppression of electromagnetic dissipation due to superconducting quasiparticles , 2014, Nature.

[29]  P. Zoller,et al.  Preparation of entangled states by quantum Markov processes , 2008, 0803.1463.

[30]  Jens Koch,et al.  Fluxonium: Single Cooper-Pair Circuit Free of Charge Offsets , 2009, Science.

[31]  W. Dur,et al.  Steady-state entanglement in open and noisy quantum systems , 2006 .

[32]  Daniel Braun,et al.  Creation of entanglement by interaction with a common heat bath. , 2002, Physical review letters.

[33]  H. Briegel,et al.  Dynamic entanglement in oscillating molecules and potential biological implications. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[34]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[35]  Guanyu Zhu,et al.  Circuit QED with fluxonium qubits: Theory of the dispersive regime , 2012, 1210.1605.

[36]  A. Shimony,et al.  Proposed Experiment to Test Local Hidden Variable Theories. , 1969 .

[37]  Jay M. Gambetta,et al.  Broadband filters for abatement of spontaneous emission in circuit quantum electrodynamics , 2015, 1508.01743.

[38]  Francesco Petruccione,et al.  The Theory of Open Quantum Systems , 2002 .

[39]  Gerardo Adesso,et al.  Testing the Validity of the 'Local' and 'Global' GKLS Master Equations on an Exactly Solvable Model , 2017, Open Syst. Inf. Dyn..

[40]  Mika A. Sillanpää,et al.  Coherent quantum state storage and transfer between two phase qubits via a resonant cavity , 2007, Nature.

[41]  S. Girvin,et al.  Stabilizing entanglement autonomously between two superconducting qubits , 2013, 1307.4349.

[42]  Luis Quiroga,et al.  Nonequilibrium thermal entanglement , 2007 .

[43]  L. Jakóbczyk Entangling two qubits by dissipation , 2002 .

[44]  Coherence of mechanical oscillators mediated by coupling to different baths , 2017, 1701.08759.

[45]  A N Cleland,et al.  Qubit Architecture with High Coherence and Fast Tunable Coupling. , 2014, Physical review letters.

[46]  A. Sørensen,et al.  Steady-state entanglement of two superconducting qubits engineered by dissipation , 2013, 1304.0746.

[47]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[48]  M. B. Plenio,et al.  Cavity-loss-induced generation of entangled atoms , 1999 .

[49]  M. Nielsen Conditions for a Class of Entanglement Transformations , 1998, quant-ph/9811053.

[50]  V. Manucharyan,et al.  Demonstration of Protection of a Superconducting Qubit from Energy Decay. , 2018, Physical review letters.

[51]  S. Schirmer,et al.  Generating maximal entanglement between non-interacting atoms by collective decay and symmetry breaking , 2010, 1005.2114.

[52]  Yi-Xin Chen,et al.  Quantum refrigerator driven by current noise , 2011, 1104.2363.

[53]  Hakan E. Tureci,et al.  Steady-state entanglement of spatially separated qubits via quantum bath engineering , 2014, 1403.6474.

[54]  Giuseppe Compagno,et al.  Entanglement Trapping in Structured Environments , 2008, 0805.3056.

[55]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[56]  B. Moor,et al.  A comparison of the entanglement measures negativity and concurrence , 2001, quant-ph/0108021.

[57]  G'eraldine Haack,et al.  Markovian master equations for quantum thermal machines: local versus global approach , 2017, 1707.09211.

[58]  Almut Beige,et al.  Cooling atoms into entangled states , 2009, 0903.2796.

[59]  Marcus Huber,et al.  Autonomous quantum thermal machine for generating steady-state entanglement , 2015, 1504.00187.

[60]  A S Sørensen,et al.  Dissipative preparation of entanglement in optical cavities. , 2010, Physical review letters.

[61]  W. Dur,et al.  Entanglement and its dynamics in open, dissipative systems , 2007, quant-ph/0703138.

[62]  M B Plenio,et al.  Entangled light from white noise. , 2002, Physical review letters.

[63]  Fabio Benatti,et al.  Environment induced entanglement in Markovian dissipative dynamics. , 2003, Physical review letters.

[64]  G. Lindblad On the generators of quantum dynamical semigroups , 1976 .