Basal-like breast carcinomas: clinical outcome and response to chemotherapy

Background: Grade-III invasive ductal carcinomas of no special type (IDCs-NST) constitute a heterogeneous group of tumours with different clinical behaviour and response to chemotherapy. As many as 25% of all grade-III IDCs-NST are known to harbour a basal-like phenotype, as defined by gene expression profiling or immunohistochemistry for basal cytokeratins. Patients with basal-like breast carcinomas (BLBC) are reported to have a shorter disease-free and overall survival. Material and methods: A retrospective analysis of 49 patients with BLBC (as defined by basal cytokeratin expression) and 49 controls matched for age, nodal status and grade was carried out. Histological features, immunohistochemical findings for oestrogen receptor (ER), progesterone receptor (PgR) and HER2, and clinical outcome and survival after adjuvant chemotherapy were compared between the two groups. Results: It was more likely for patients with BLBCs to be found negative for ER (p<0.0001), PgR (p<0.0001) and HER2 (p<0.01) than controls. Patients with BLBCs were found to have a significantly higher recurrence rate (p<0.05) and were associated with significantly shorter disease-free and overall survival (both p<0.05). In the group of patients who received anthracycline-based adjuvant chemotherapy (BLBC group, n = 47; controls, n = 49), both disease-free and overall survival were found to be significantly shorter in the BLBC group (p<0.05). Conclusions: BLBCs are a distinct clinical and pathological entity, characterised by high nuclear grade, lack of hormone receptors and HER2 expression and a more aggressive clinical course. Standard adjuvant chemotherapy seems to be less effective in these tumours and new therapeutic approaches are indicated.

[1]  C. Perou,et al.  The Triple Negative Paradox: Primary Tumor Chemosensitivity of Breast Cancer Subtypes , 2007, Clinical Cancer Research.

[2]  D. Easton,et al.  Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast , 2006, Histopathology.

[3]  Å. Borg,et al.  Cytokeratin 5/14-positive breast cancer: true basal phenotype confined to BRCA1 tumors , 2005, Modern Pathology.

[4]  A. Ashworth,et al.  Pleomorphic lobular carcinoma of the breast: role of comprehensive molecular pathology in characterization of an entity , 2005, The Journal of pathology.

[5]  G. Ball,et al.  High‐throughput protein expression analysis using tissue microarray technology of a large well‐characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses , 2005, International journal of cancer.

[6]  Roman Rouzier,et al.  Breast Cancer Molecular Subtypes Respond Differently to Preoperative Chemotherapy , 2005, Clinical Cancer Research.

[7]  Julian Peto,et al.  Prediction of BRCA1 Status in Patients with Breast Cancer Using Estrogen Receptor and Basal Phenotype , 2005, Clinical Cancer Research.

[8]  F. Schmitt,et al.  p63, cytokeratin 5, and P-cadherin: three molecular markers to distinguish basal phenotype in breast carcinomas , 2005, Virchows Archiv.

[9]  D. Ross,et al.  Basal cytokeratins and their relationship to the cellular origin and functional classification of breast cancer , 2005, Breast Cancer Research.

[10]  J. Inazawa,et al.  Correlation of KIT and EGFR overexpression with invasive ductal breast carcinoma of the solid‐tubular subtype, nuclear grade 3, and mesenchymal or myoepithelial differentiation , 2005, Cancer Science.

[11]  S. Jader,et al.  Invasive breast carcinoma , 2005 .

[12]  Ian O Ellis,et al.  Estrogen receptor-negative breast carcinomas: a review of morphology and immunophenotypical analysis , 2005, Modern Pathology.

[13]  A. Ashworth,et al.  Hallmarks of 'BRCAness' in sporadic cancers , 2004, Nature Reviews Cancer.

[14]  Jorge S. Reis-Filho,et al.  Molecular Cytogenetic Identification of Subgroups of Grade III Invasive Ductal Breast Carcinomas with Different Clinical Outcomes , 2004, Clinical Cancer Research.

[15]  A. Gown,et al.  Immunohistochemical and Clinical Characterization of the Basal-Like Subtype of Invasive Breast Carcinoma , 2004, Clinical Cancer Research.

[16]  Daniel Birnbaum,et al.  Basal and luminal breast cancers: basic or luminous? (review). , 2004, International journal of oncology.

[17]  J. Isola,et al.  Interlaboratory Comparison of HER-2 Oncogene Amplification as Detected by Chromogenic and Fluorescence in situ Hybridization , 2004, Clinical Cancer Research.

[18]  I. Ellis,et al.  Expression of luminal and basal cytokeratins in human breast carcinoma , 2004, The Journal of pathology.

[19]  William D. Foulkes,et al.  Re: Germline BRCA1 Mutations and a Basal Epithelial Phenotype in Breast Cancer , 2004 .

[20]  L. Bégin,et al.  Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. , 2004, Journal of the National Cancer Institute.

[21]  Philip M. Long,et al.  Breast cancer classification and prognosis based on gene expression profiles from a population-based study , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[22]  R. Tibshirani,et al.  Repeated observation of breast tumor subtypes in independent gene expression data sets , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Tibshirani,et al.  Copyright © American Society for Investigative Pathology Short Communication Expression of Cytokeratins 17 and 5 Identifies a Group of Breast Carcinomas with Poor Clinical Outcome , 2022 .

[24]  S. Ménard,et al.  HER2 as a Prognostic Factor in Breast Cancer , 2001, Oncology.

[25]  R. Tibshirani,et al.  Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[26]  F. Spyratos,et al.  Comparison of Enzyme Immunoassay and Immunohistochemical Measurements of Estrogen and Progesterone Receptors in Breast Cancer Patients , 2001, Applied immunohistochemistry & molecular morphology : AIMM.

[27]  S. Lakhani,et al.  CGH analysis of ductal carcinoma of the breast with basaloid/myoepithelial cell differentiation , 2001, British Journal of Cancer.

[28]  S. Hirohashi,et al.  Large, central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. , 2000, The American journal of surgical pathology.

[29]  S. Hirohashi,et al.  Myoepithelial differentiation in high-grade invasive ductal carcinomas with large central acellular zones. , 1999, Human pathology.

[30]  Christian A. Rees,et al.  Distinctive gene expression patterns in human mammary epithelial cells and breast cancers. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  I. Ellis,et al.  Pathological prognostic factors in breast cancer. , 1999, Critical reviews in oncology/hematology.

[32]  A. Gown,et al.  Specificity of HercepTest in determining HER-2/neu status of breast cancers using the United States Food and Drug Administration-approved scoring system. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[33]  C K Osborne,et al.  Estrogen receptor status by immunohistochemistry is superior to the ligand-binding assay for predicting response to adjuvant endocrine therapy in breast cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[34]  M. Fernö,et al.  Correlation between p53, c‐erbB‐2, and topoisomerase IIα expression, DNA ploidy, hormonal receptor status and proliferation in 356 node‐negative breast carcinomas: prognostic implications , 1999, The Journal of pathology.

[35]  U. Veronesi,et al.  Biologic and clinicopathologic factors as indicators of specific relapse types in node-negative breast cancer. , 1995, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[36]  I. Ellis,et al.  Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. , 2002, Histopathology.