Equilibrium Skyrmion Lattice Ground State in a Polar Easy-plane Magnet
暂无分享,去创建一个
J. White | A. Loidl | V. Tsurkan | R. Cubitt | A. Leonov | I. Kézsmárki | S. Bordács | D. Ehlers | H.-A. Krug von Nidda | S. Widmann | B. Szigeti | Á. Butykai
[1] T. Arima,et al. Thermodynamically stable skyrmion lattice at low temperatures in a bulk crystal of lacunar spinel GaV 4 Se 8 , 2017 .
[2] J. White,et al. Cycloidally modulated magnetic order stabilized by thermal fluctuations in the N\'{e}el-type skyrmion host GaV$_4$S$_8$ , 2017, 1704.03621.
[3] A. Loidl,et al. Characteristics of ferroelectric-ferroelastic domains in Néel-type skyrmion host GaV4S8 , 2017, Scientific Reports.
[4] A. Loidl,et al. Exchange anisotropy in the skyrmion host GaV4S8 , 2017, Journal of physics. Condensed matter : an Institute of Physics journal.
[5] P. Lunkenheimer,et al. Jahn-Teller-driven ferroelectricity and multiferroicity in GaV4Se8 , 2017 .
[6] R. Wiesendanger,et al. Electric-field-driven switching of individual magnetic skyrmions. , 2016, Nature nanotechnology.
[7] Jun Hee Lee,et al. Lattice modes and the Jahn-Teller ferroelectric transition of GaV4S8 , 2016 .
[8] A. Loidl,et al. Skyrmion dynamics under uniaxial anisotropy , 2016 .
[9] J. White,et al. Robust metastable skyrmions and their triangular-square lattice structural transition in a high-temperature chiral magnet. , 2016, Nature materials.
[10] P. Lunkenheimer,et al. On the multiferroic skyrmion-host GaV4S8 , 2016, 1606.04511.
[11] Y. Tokura,et al. Heat-Treatment-Induced Switching of Magnetic States in the Doped Polar Semiconductor Ge1−xMnxTe , 2016, Scientific Reports.
[12] Kang L. Wang,et al. Mobile Néel skyrmions at room temperature: status and future , 2016, 1603.00443.
[13] A. Locatelli,et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. , 2016, Nature nanotechnology.
[14] M. Randeria,et al. Skyrmions in chiral magnets with Rashba and Dresselhaus spin-orbit coupling , 2015, 1509.07508.
[15] Benjamin Krueger,et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.
[16] M. Mochizuki,et al. Dynamical magnetoelectric phenomena of multiferroic skyrmions , 2015, Journal of physics. Condensed matter : an Institute of Physics journal.
[17] J. White,et al. Néel-type skyrmion lattice with confined orientation in the polar magnetic semiconductor GaV4S8. , 2015, Nature materials.
[18] Y. Tokura,et al. Uniaxial stress control of skyrmion phase , 2015, Nature Communications.
[19] P. Lunkenheimer,et al. Polar Dynamics at the Jahn-Teller Transition in Ferroelectric GaV₄S₈. , 2015, Physical review letters.
[20] S. Heinze,et al. Electrical detection of magnetic skyrmions by tunnelling non-collinear magnetoresistance. , 2015, Nature nanotechnology.
[21] M Kubota,et al. Large anisotropic deformation of skyrmions in strained crystal. , 2015, Nature nanotechnology.
[22] R. Wiesendanger,et al. Field-dependent size and shape of single magnetic Skyrmions. , 2015, Physical review letters.
[23] P. Lunkenheimer,et al. Multiferroicity and skyrmions carrying electric polarization in GaV4S8 , 2015, Science Advances.
[24] J. White,et al. A new class of chiral materials hosting magnetic skyrmions beyond room temperature , 2015, Nature Communications.
[25] M. Mostovoy,et al. Multiply periodic states and isolated skyrmions in an anisotropic frustrated magnet , 2015, Nature Communications.
[26] A. Saxena,et al. Skyrmion fractionalization and merons in chiral magnets with easy-plane anisotropy , 2014, 1406.1422.
[27] J. White,et al. Electric-field-induced Skyrmion distortion and giant lattice rotation in the magnetoelectric insulator Cu2OSeO3. , 2014, Physical review letters.
[28] R. Wiesendanger,et al. Thermal stability of an interface-stabilized skyrmion lattice. , 2014, Physical review letters.
[29] T. Matsuda,et al. Observation of the magnetic flux and three-dimensional structure of skyrmion lattices by electron holography. , 2014, Nature nanotechnology.
[30] Wei Ning,et al. Highly stable skyrmion state in helimagnetic MnSi nanowires. , 2014, Nano letters.
[31] M. Randeria,et al. Enhanced Stability of Skyrmions in Two-Dimensional Chiral Magnets with Rashba Spin-Orbit Coupling , 2014, 1402.7082.
[32] A. N. Bogdanov,et al. Chiral skyrmions in cubic helimagnet films: The role of uniaxial anisotropy , 2013, 1311.1191.
[33] Y. Tokura,et al. Topological properties and dynamics of magnetic skyrmions. , 2013, Nature nanotechnology.
[34] A. Fert,et al. Nucleation, stability and current-induced motion of isolated magnetic skyrmions in nanostructures. , 2013, Nature nanotechnology.
[35] Y. Tokura,et al. Towards control of the size and helicity of skyrmions in helimagnetic alloys by spin-orbit coupling. , 2013, Nature nanotechnology.
[36] R. Wiesendanger,et al. Writing and Deleting Single Magnetic Skyrmions , 2013, Science.
[37] A. Fert,et al. Skyrmions on the track. , 2013, Nature nanotechnology.
[38] I. Dzyaloshinskiǐ. THEORY OF HELICOIDAL STRUCTURES IN ANTIFERROMAGNETS. I. NONMETALS , 2013 .
[39] Y. Tokura,et al. Observation of Skyrmions in a Multiferroic Material , 2012, Science.
[40] T. Matsuda,et al. Real-space observation of skyrmion lattice in helimagnet MnSi thin samples. , 2012, Nano letters.
[41] C. Pfleiderer,et al. Emergent electrodynamics of skyrmions in a chiral magnet , 2012, Nature Physics.
[42] H. Kawamura,et al. Multiple-q states and the Skyrmion lattice of the triangular-lattice Heisenberg antiferromagnet under magnetic fields. , 2011, Physical review letters.
[43] A. Leonov. Twisted, localized, and modulated states described in the phenomenological theory of chiral and nanoscale ferromagnets , 2011 .
[44] S. Heinze,et al. Spontaneous atomic-scale magnetic skyrmion lattice in two dimensions , 2011 .
[45] P. Böni,et al. Long-range crystalline nature of the Skyrmion lattice in MnSi. , 2011, Physical review letters.
[46] G. Springholz,et al. Molecular beam epitaxy of single phase GeMnTe with high ferromagnetic transition temperature , 2011, Journal of crystal growth.
[47] Y. Tokura,et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. , 2011, Nature materials.
[48] M. Ezawa. Compact merons and skyrmions in thin chiral magnetic films , 2010, 1010.4119.
[49] U. Rößler,et al. Chiral Skyrmionic matter in non-centrosymmetric magnets , 2010, 1009.4849.
[50] Y. Tokura,et al. Real-space observation of a two-dimensional skyrmion crystal , 2010, Nature.
[51] P. Böni,et al. Skyrmion lattices in metallic and semiconducting B20 transition metal compounds , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.
[52] U. Rößler,et al. Stabilization of skyrmion textures by uniaxial distortions in noncentrosymmetric cubic helimagnets , 2009, 0904.4842.
[53] C. Pfleiderer,et al. Skyrmion lattice in the doped semiconductor Fe1-xCoxSi , 2009, 0903.2587.
[54] P. Böni,et al. Skyrmion Lattice in a Chiral Magnet , 2009, Science.
[55] C. Pfleiderer,et al. Spontaneous skyrmion ground states in magnetic metals , 2006, Nature.
[56] D. Johrendt,et al. Electronic and Structural Instabilities in GaV4S8 and GaMo4S8. , 2001 .
[57] A. Hubert,et al. Thermodynamically stable magnetic vortex states in magnetic crystals , 1994 .
[58] A. N. Bogdanov,et al. Thermodynamically stable "vortices" in magnetically ordered crystals. The mixed state of magnets , 1989 .