Euglena gracilis A Model for Flagellar Surface Assembly, with Reference to Other Cells That Bear Flagellar Mastigonemes and Scales

The flagella of euglenoids consist of a rich assemblage of surface appendages precisely positioned with respect to each other and to axonemal components. The presence of these appendages (mastigonemes or flagellar hairs) and the occurrence of flagellar scales in certain “green” flagellates provide visible evidence that the flagellar surface in these forms is constructed and maintained to a large extent independently from the adjacent cell surface. Thus, flagellar assembly may require both the specific targeting of some proteins to and the exclusion of other proteins from the flagellar surface. In the case of some green flagellates, for example, there may be two layers of geometrically arranged scales on the flagella, each layer may consist of a different kind of scale, the layers do not intermix, and the flagellar scales differ markedly from the scales (up to three different kinds) found on the cell body. Organisms with scales and mastigonemes have served as useful models in helping to understand how flagellar surfaces are assembled and how surface molecules are stabilized or held in position along a presumably fluid flagellar membrane.

[1]  J. Schultz,et al.  Guanylate cyclase in the excitable ciliary membrane of Paramecium , 1980, FEBS letters.

[2]  W. Dentler Fractionation of Tetrahymena ciliary membranes with triton X-114 and the identification of a ciliary membrane ATPase , 1988, The Journal of cell biology.

[3]  Y. Urade,et al.  Isolation, purification, and characterization of the pellicle of Euglena gracilis z. , 1987, Journal of biochemistry.

[4]  G. B. Bouck,et al.  Synthesis and Assembly of the Flagellar Surface1,2 , 1984 .

[5]  A. Rogalski,et al.  Flagellar surface antigens in Euglena: immunological evidence for an external glycoprotein pool and its transfer to the regenerating flagellum , 1982, The Journal of cell biology.

[6]  R. Dubreuil,et al.  The membrane skeleton of a unicellular organism consists of bridged, articulating strips , 1985, The Journal of cell biology.

[7]  D L Nelson,et al.  Regulation of ciliary adenylate cyclase by Ca2+ in Paramecium. , 1987, The Biochemical journal.

[8]  K. Simons,et al.  The trans Golgi network: sorting at the exit site of the Golgi complex. , 1986, Science.

[9]  J. Hyams,et al.  The Euglena paraflagellar rod: structure, relationship to other flagellar components and preliminary biochemical characterization. , 1982, Journal of cell science.

[10]  G. Gooday,et al.  Further Observations on the Chemical Composition of Thecae of Platymonas tetrathele West (Prasinophyceae) by Means of the X-ray Microanalyser Electron Microscope (EMMA) , 1973 .

[11]  J. Murray Three-dimensional structure of a membrane-microtubule complex , 1984, The Journal of cell biology.

[12]  D. E. Buetow,et al.  The biology of euglena , 1968 .

[13]  G. Drummond,et al.  Guanylate cyclase of sea urchin sperm: subcellular localization. , 1976, Archives of biochemistry and biophysics.

[14]  W. de Souza,et al.  Isolation of the flagellum and characterization of the paraxial structure of Herpetomonas megaseliae. , 1984, Journal of submicroscopic cytology.

[15]  G. Witman,et al.  Outer doublet heterogeneity reveals structural polarity related to beat direction in Chlamydomonas flagella , 1983, The Journal of cell biology.

[16]  W. Wiessner,et al.  Compartments in Algal Cells and Their Interaction , 1984, Proceedings in Life Sciences.

[17]  S. P. Gibbs,et al.  The chloroplasts of Euglena may have evolved from symbiotic green algae , 1978 .

[18]  G. B. Bouck,et al.  Synthesis and mobilization of flagellar glycoproteins during regeneration in Euglena , 1982, The Journal of cell biology.

[19]  D. R. Markey,et al.  Mastigoneme attachment in Ochromonas. , 1977, Journal of ultrastructure research.

[20]  M. Bessen,et al.  Calcium control of waveform in isolated flagellar axonemes of chlamydomonas , 1980, The Journal of cell biology.

[21]  R. Norris,et al.  Light and electron microscopical studies of Eutreptiella eupharyngea sp. nov. (Euglenophyceae) from Danish and American waters , 1986 .

[22]  A. Valaitis,et al.  Surface organization and composition of Euglena. II. Flagellar mastigonemes , 1978, The Journal of cell biology.

[23]  D. Robinson,et al.  Membrane Flow via the Golgi Apparatus of Higher Plant Cells , 1982 .

[24]  V. Vacquier,et al.  Phosphorylation of membrane-bound guanylate cyclase of sea urchin spermatozoa , 1986, The Journal of cell biology.

[25]  A. Rogalski,et al.  Characterization and localization of a flagellar-specific membrane glycoprotein in Euglena , 1980, The Journal of cell biology.

[26]  R. McLean,et al.  Cell-cell interactions: enhancement of glycosyl transferase ectoenzyme systems during Chlamydomonas gametic contact. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Rosenbaum,et al.  The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules , 1986, The Journal of cell biology.

[28]  W. Dentler Fine structural localization of phosphatases in cilia and basal bodies of Tetrahymena pyriformis. , 1977, Tissue & cell.

[29]  M. Sogin,et al.  Phylogenetic relationships between chlorophytes, chrysophytes, and oomycetes. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  M. Melkonian,et al.  Flagellar membrane specializations and their relationship to mastigonemes and microtubules in Euglena gracilis. , 1982, Journal of cell science.

[31]  Bessie Huang,et al.  Chlamydomonas reinhardtii: A Model System for the Genetic Analysis of Flagellar Structure and Motility , 1986 .

[32]  J. R. Rawson,et al.  Characterization of the nuclear ribosomal DNA of Euglena gracilis. , 1981, Gene.

[33]  D. Nelson,et al.  Biochemical studies of the excitable membrane of Paramecium. IV. Protein kinase activities of cilia and ciliary membrane. , 1980, Biochimica et biophysica acta.

[34]  J. Schultz,et al.  Adenylate cyclase in cilia from Paramecium , 1983 .

[35]  D. Patterson,et al.  Phagotrophy and the origins of the euglenoid flagellates , 1988 .

[36]  P. Walne,et al.  ULTRASTRUCTURE OF THE FLAGELLA OF THE COLORLESS PHAGOTROPH PERANEMA TRICHOPHORUM (EUGLENOPHYCEAE). I. FLAGELLAR MASTIGONEMES 1 , 1985 .

[37]  U. Goodenough,et al.  Cyclic AMP functions as a primary sexual signal in gametes of Chlamydomonas reinhardtii , 1987, The Journal of cell biology.

[38]  K. Gull,et al.  Tubulin heterogeneity in the trypanosome Crithidia fasciculata , 1984, Molecular and cellular biology.

[39]  W. Dentler,et al.  Microtubule-membrane interactions in cilia and flagella. , 1981, International review of cytology.

[40]  A. Mylnikov Ultrastructure of a Colourless Flagellate, Phyllomitus apiculatusSkuja 1948 (Kinetoplastida) , 1986 .

[41]  M. Sogin,et al.  Evolutionary diversity of eukaryotic small-subunit rRNA genes. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[42]  S. Travis,et al.  Characterization of Ca2+- or Mg2+-ATPase of the excitable ciliary membrane from Paramecium tetraurelia: comparison with a soluble Ca2+-dependent ATPase. , 1986, Biochimica et biophysica acta.

[43]  J. Gallo,et al.  Homologies between paraflagellar rod proteins from trypanosomes and euglenoids revealed by a monoclonal antibody. , 1985, European journal of cell biology.

[44]  Ø. Moestrup Phycological Reviews 7 , 1982 .

[45]  M. Doughty,et al.  Divalent cation-dependent ATPase activities in ciliary membranes and other surface structures in Paramecium tetraurelia: comparative in vitro studies. , 1985, Archives of biochemistry and biophysics.

[46]  K. Gull,et al.  Structural and biochemical characterisation of the paraflagellar rod of Crithidia fasciculata. , 1983, European journal of cell biology.

[47]  Robert A. Bloodgood Glycoprotein Dynamics in the Chlamydomonas Flagellar Membrane , 1987 .

[48]  G. B. Witman,et al.  CHLAMYDOMONAS FLAGELLA , 1972, The Journal of cell biology.

[49]  J. Schultz,et al.  Characterization of a Ca2+-dependent guanylate cyclase in the excitable ciliary membrane from Paramecium. , 2005, European journal of biochemistry.

[50]  J. Corliss The kingdom Protista and its 45 phyla. , 1984, Bio Systems.

[51]  V. Vacquier,et al.  Effects of extracellular egg factors on sperm guanylate cyclase. , 1985, Science.

[52]  R. Dubreuil,et al.  Properties and topography of the major integral plasma membrane protein of a unicellular organism , 1988, The Journal of cell biology.

[53]  M. Farquhar Progress in unraveling pathways of Golgi traffic. , 1985, Annual review of cell biology.

[54]  G. Kochert,et al.  FLAGELLAR DEVELOPMENT AND REGENERATION IN VOLVOX CARTERI (CHLOROPHYTA) 1 , 1986 .

[55]  M. Melkonian,et al.  Identification of 3-deoxy-manno-2-octulosonic acid, 3-deoxy-5-O-methyl-manno-2-octulosonic acid and 3-deoxy-lyxo-2-heptulosaric acid in the cell wall (theca) of the green alga Tetraselmis striata Butcher (Prasinophyceae). , 1989, European journal of biochemistry.

[56]  M. Doughty Ciliary Ca2+-ATPase from the excitable membrane of Paramecium. Some properties and purification by affinity chromatography , 1978 .

[57]  M. Bré,et al.  Euglena plasma membrane during normal and vitamin B12 starvation growth. , 1980, Journal of cell science.

[58]  G. Leedale Phylogenetic criteria in euglenoid flagellates. , 1978, Bio Systems.

[59]  G. B. Bouck,et al.  Endogenous glycosyltransferases glucosylate lipids in flagella of Euglena , 1984, The Journal of cell biology.

[60]  T. Cavalier-smith The evolutionary origin and phylogeny of eukaryote flagella. , 1982, Symposia of the Society for Experimental Biology.

[61]  P. Walne,et al.  Studies on scale morphogenesis in the Golgi apparatus of Pyramimonas tetrarhynchus (Prasinophyceae). , 1979, Journal of cell science.

[62]  M. Romanini Advances in cell and molecular biology: Volume I. Edited by E. J. DuPraw. New York, London: Academic Press Inc. 308 pp. $15·00 , 1973 .

[63]  G. B. Bouck,et al.  Immunological and structural evidence for patterned intussusceptive surface growth in a unicellular organism. A postulated role for submembranous proteins and microtubules , 1976, The Journal of cell biology.

[64]  G. B. Bouck,et al.  CER, Cell Surface-Flagellum Relationship During Flagellar Development , 1984 .

[65]  M. Melkonian,et al.  GOLGI-APPARATUS ACTIVITY AND MEMBRANE FLOW DURING SCALE BIOGENESIS IN THE GREEN FLAGELLATE SCHERFFELIA-DUBIA (PRASINOPHYCEAE) , 1986 .

[66]  Robert A. Bloodgood Motility occurring in association with the surface of the Chlamydomonas flagellum , 1977, The Journal of cell biology.

[67]  M. Sano Subcellualr localizations of guanylate cyclase and 3′,5′-cyclic nucleotide phophodiesterase in sea urchin sperm , 1976 .

[68]  J. Rosenbaum,et al.  Regulation of the synthesis and assembly of ciliary and flagellar proteins during regeneration. , 1986, Annual review of cell biology.

[69]  J. Schultz,et al.  Calcium/calmodulin-regulated guanylate cyclase and calcium-permeability in the ciliary membrane from Tetrahymena. , 1983, European journal of biochemistry.