Semantic Pleonasm Detection

Pleonasms are words that are redundant. To aid the development of systems that detect pleonasms in text, we introduce an annotated corpus of semantic pleonasms. We validate the integrity of the corpus with interannotator agreement analyses. We also compare it against alternative resources in terms of their effects on several automatic redundancy detection methods.

[1]  K. Koedinger,et al.  Example-Tracing Tutors : A New Paradigm for Intelligent Tutoring Systems , 2008 .

[2]  T. Landauer Automatic Essay Assessment , 2003 .

[3]  Hwee Tou Ng,et al.  Building a Large Annotated Corpus of Learner English: The NUS Corpus of Learner English , 2013, BEA@NAACL-HLT.

[4]  G. V. Chernov Semantic Aspects of Psycholinguistic Research in Simultaneous Interpretation , 1979, Language and speech.

[5]  M. Herrero Botín [Language and communication]. , 1984, Revista de enfermeria.

[6]  J. Fleiss Measuring nominal scale agreement among many raters. , 1971 .

[7]  B. Evans,et al.  現代アメリカ語の用法(A Dictionary of Contemporary American Usage)-正- , 1967 .

[8]  Noah Webster,et al.  Webster's ninth new collegiate dictionary , 2012 .

[9]  N. A-R A E H A N,et al.  Detecting errors in English article usage by non-native speakers , 2006 .

[10]  Rebecca Hwa,et al.  Redundancy Detection in ESL Writings , 2014, EACL.

[11]  Jennifer Foster,et al.  Using Parse Features for Preposition Selection and Error Detection , 2010, ACL.

[12]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[13]  Thomas J. Creswell,et al.  The usage panel in The American heritage dictionary, second college edition , 1986 .

[14]  Vincent Aleven,et al.  A New Paradigm for Intelligent Tutoring Systems: Example-Tracing Tutors , 2009, Int. J. Artif. Intell. Educ..

[15]  Michael I. Jordan,et al.  On Discriminative vs. Generative Classifiers: A comparison of logistic regression and naive Bayes , 2001, NIPS.

[16]  H. Fowler,et al.  A Dictionary of Modern English Usage , 1926 .

[17]  Kenneth Heafield,et al.  KenLM: Faster and Smaller Language Model Queries , 2011, WMT@EMNLP.

[18]  J. Gregory Trafton,et al.  Effective Tutoring Techniques: A Comparison of Human Tutors and Intelligent Tutoring Systems , 1992 .

[19]  Stefanie Seiler,et al.  Elements Of Style , 2016 .

[20]  C. Lehmann Pleonasm and hypercharacterisation , 2005 .

[21]  Wayne C. Booth,et al.  A Manual for Writers of Research Papers, Theses, and Dissertations: Chicago Style for Students and Researchers , 2010 .

[22]  Arthur Quinn,et al.  Figures of Speech: 60 Ways To Turn A Phrase , 1982 .

[23]  Dan Roth,et al.  Generating Confusion Sets for Context-Sensitive Error Correction , 2010, EMNLP.

[24]  T. W. Chaundy,et al.  Rules for Compositors and Readers at the University Press, Oxford , 1928, Nature.

[25]  Daniela Fischer,et al.  Digital Design And Computer Architecture , 2016 .

[26]  Hwee Tou Ng,et al.  Grammatical Error Correction with Alternating Structure Optimization , 2011, ACL.

[27]  Diane J. Litman,et al.  Ontology-Based Argument Mining and Automatic Essay Scoring , 2014, ArgMining@ACL.

[28]  John Liu,et al.  sense2vec - A Fast and Accurate Method for Word Sense Disambiguation In Neural Word Embeddings , 2015, ArXiv.

[29]  Leah S. Larkey,et al.  Automatic essay grading using text categorization techniques , 1998, SIGIR '98.

[30]  S. Pandya Style. , 1987 .

[31]  R. P. Fishburne,et al.  Derivation of New Readability Formulas (Automated Readability Index, Fog Count and Flesch Reading Ease Formula) for Navy Enlisted Personnel , 1975 .

[32]  George A. Miller,et al.  WordNet: A Lexical Database for English , 1995, HLT.

[33]  Robert K. Atkinson Intelligent tutoring systems: Structure, applications and challenges , 2016 .