Local convergence of an augmented Lagrangian method for matrix inequality constrained programming

We consider nonlinear optimization programs with matrix inequality constraints, also known as nonlinear semidefinite programs. We prove local convergence for an augmented Lagrangian method which uses smooth spectral penalty functions. The sufficient second-order no-gap optimality condition and a suitable implicit function theorem are used to prove local linear convergence without the need to drive the penalty parameter to 0.

[1]  Pierre Apkarian,et al.  Nonsmooth H∞ synthesis , 2005, IEEE Trans. Autom. Control..

[2]  Pierre Apkarian,et al.  An augmented Lagrangian method for a class of LMI-constrained problems in robust control theory , 2001, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  Pierre Apkarian,et al.  Nonsmooth Optimization for Multidisk Hoo Synthesis , 2006, Eur. J. Control.

[4]  Pierre Apkarian,et al.  Nonsmooth optimization for multiband frequency domain control design , 2007, Autom..

[5]  Pierre Apkarian,et al.  Robust Control via Sequential Semidefinite Programming , 2002, SIAM J. Control. Optim..

[6]  Pierre Apkarian,et al.  Spectral bundle methods for non-convex maximum eigenvalue functions: second-order methods , 2005, Math. Program..

[7]  Leonid Mosheyev,et al.  Penalty/Barrier multiplier algorthm for semidefinit programming , 2000 .

[8]  P. Apkarian,et al.  Nonsmooth H ∞ synthesis , 2005 .

[9]  Dimitri P. Bertsekas,et al.  Constrained Optimization and Lagrange Multiplier Methods , 1982 .

[10]  P. Toint,et al.  A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds , 1991 .

[11]  Friedemann Leibfritz,et al.  Trust region methods for solving the optimal output feedback design problem , 2003, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[12]  Michael Stingl,et al.  On the solution of large-scale SDP problems by the modified barrier method using iterative solvers , 2009, Math. Program..

[13]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Convex Programming Problems , 1997, SIAM J. Optim..

[14]  Hristo S. Sendov Generalized Hadamard Product and the Derivatives of Spectral Functions , 2006, SIAM J. Matrix Anal. Appl..

[15]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[16]  Alexander Shapiro,et al.  On differentiability of symmetric matrix valued functions , 2002 .

[17]  Pierre Apkarian,et al.  Partially Augmented Lagrangian Method for Matrix Inequality Constraints , 2004, SIAM J. Optim..

[18]  Franz Rendl,et al.  A Spectral Bundle Method for Semidefinite Programming , 1999, SIAM J. Optim..

[19]  J. B. THEVENET,et al.  Nonsmooth methods for large bilinear matrix inequalities : Applications to feedback control , 2005 .

[20]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[21]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[22]  Friedemann Leibfritz,et al.  An Interior Point Constrained Trust Region Method for a Special Class of Nonlinear Semidefinite Programming Problems , 2002, SIAM J. Optim..

[23]  R. Rockafellar Augmented Lagrange Multiplier Functions and Duality in Nonconvex Programming , 1974 .

[24]  R. Fletcher Semi-Definite Matrix Constraints in Optimization , 1985 .

[25]  Pierre Apkarian,et al.  A Trust Region Spectral Bundle Method for Nonconvex Eigenvalue Optimization , 2008, SIAM J. Optim..

[26]  P. Apkarian,et al.  Reduced-order output feedback control design with specSDP, a code for linear/nonlinear SDP problems , 2005, 2005 International Conference on Control and Automation.

[27]  M. J. D. Powell,et al.  A method for nonlinear constraints in minimization problems , 1969 .

[28]  Richard Bellman,et al.  Introduction to Matrix Analysis , 1972 .

[29]  Pierre Apkarian,et al.  Non Linear Spectral SDP Method for BMI-Constrained Problems: Applications to Control Design , 2004, ICINCO.

[30]  Alexander Shapiro,et al.  First and second order analysis of nonlinear semidefinite programs , 1997, Math. Program..

[31]  Florian Jarre Some Aspects of Nonlinear Semidefinite Programming , 2001, System Modelling and Optimization.

[32]  P. Boggs,et al.  Augmented Lagrangians which are quadratic in the multiplier , 1980 .

[33]  M. Hestenes Multiplier and gradient methods , 1969 .

[34]  Richard Bellman,et al.  Introduction to matrix analysis (2nd ed.) , 1997 .

[35]  José Mario Martínez,et al.  Numerical Comparison of Augmented Lagrangian Algorithms for Nonconvex Problems , 2005, Comput. Optim. Appl..

[36]  Pierre Apkarian,et al.  Controller Design via Nonsmooth Multi-Directional Search , 2004 .

[37]  D. Noll,et al.  Augmented Lagrangian methods with smooth penalty functions , 2009 .

[38]  L. Grippo,et al.  A New Class of Augmented Lagrangians in Nonlinear Programming , 1979 .

[39]  R. Saigal,et al.  Handbook of semidefinite programming : theory, algorithms, and applications , 2000 .

[40]  P. Apkarian,et al.  Fixed‐order H∞ control design via a partially augmented Lagrangian method , 2003 .

[41]  Pierre Apkarian,et al.  Controller Design via Nonsmooth Multidirectional Search , 2006, SIAM J. Control. Optim..

[42]  Pierre Apkarian,et al.  Spectral bundle methods for non-convex maximum eigenvalue functions: first-order methods , 2005, Math. Program..

[43]  Michael Stingl,et al.  PENNON: A code for convex nonlinear and semidefinite programming , 2003, Optim. Methods Softw..

[44]  C. Lemaréchal,et al.  Nonsmooth Algorithms to Solve Semidefinite Programs , 1999 .

[45]  M. Kocvara A Generalized Augmented Lagrangian Method for Semidefinite Programming , 2003 .

[46]  Elijah Polak,et al.  Nondifferentiable optimization algorithm for designing control systems having singular value inequalities , 1982, Autom..

[47]  A. Shapiro Extremal Problems on the Set of Nonnegative Definite Matrices , 1985 .

[48]  Henry Wolkowicz,et al.  Handbook of Semidefinite Programming , 2000 .

[49]  Michael Zibulevsky,et al.  Penalty/Barrier Multiplier Methods for Large-Scale Nonlinear and Semidefinite Programming , 1996 .

[50]  Michael L. Overton,et al.  Large-Scale Optimization of Eigenvalues , 1990, SIAM J. Optim..