Applications of scaling to problems in high‐field electronic transport

Utilizing changes in the carrier distribution function by magnitude and momentum scaling of scattering rates, the author a number of interesting results concerning ionization coefficients and transient drift and diffusion. Starting with a general definition of the ionization coefficient which includes nonlocal effects, the behavior of this coefficient under scaling is determined and used to find a simple analytical expression in terms of physical parameters valid for all field strengths. When fit to data for silicon, surprisingly large but consistent high‐field, effective ionization energies are found for electrons (3.6 eV) and holes (5.0 eV). This expression can also relate ionization near an interface to that in the bulk. Rate scaling is also used to predict changes in velocity overshoot and diffusion‐limited rise times between bulk and interface behavior. These comparisons are facilitated by a novel relationship between the time dependence of the spacial diffusion of a carrier pulse and it spacial disp...

[1]  C. R. Crowell,et al.  Ionization coefficients in semiconductors: A nonlocalized property , 1974 .

[2]  David K. Ferry,et al.  Self-Scattering Path-Variable Formulation of High-Field, Time-Dependent, Quantum Kinetic Equations for Semiconductor Transport in the Finite-Collision-Duration Regime , 1979 .

[3]  C. Canali,et al.  High‐field diffusion of electrons in silicon , 1975 .

[4]  Thomas P. Pearsall,et al.  The band structure dependence of impact ionization by hot carriers in semiconductors: GaAs , 1978 .

[5]  T. Ando Screening Effect and Quantum Transport in a Silicon Inversion Layer in Strong Magnetic Fields , 1977 .

[6]  W. Fawcett,et al.  Monte Carlo determination of electron transport properties in gallium arsenide , 1970 .

[7]  John L. Moll,et al.  Physics of Semiconductors , 1964 .

[8]  R. R. Troutman Silicon surface emission of hot electrons , 1978 .

[9]  C. R. Crowell,et al.  Threshold Energies for Electron-Hole Pair Production by Impact Ionization in Semiconductors , 1972 .

[10]  A. G. Chynoweth,et al.  Uniform Silicon p‐n Junctions. II. Ionization Rates for Electrons , 1960 .

[11]  F. Capasso,et al.  Observation of Electronic Band-Structure Effects on Impact Ionization by Temperature Tuning , 1977 .

[12]  C. R. Crowell,et al.  Energy-Conservation Considerations in the Characterization of Impact Ionization in Semiconductors , 1972 .

[13]  C. R. Crowell,et al.  Effective threshold energy for pair production in nonpolar semiconductors , 1976 .

[14]  T. Maloney,et al.  Transient and steady‐state electron transport properties of GaAs and InP , 1977 .

[15]  C. Jacoboni,et al.  A review of some charge transport properties of silicon , 1977 .

[16]  Carlton M. Osburn,et al.  Effect of electron trapping on IGFET characteristics , 1977 .

[17]  B. Nag Theory of electrical transport in semiconductors , 1972 .

[18]  W. N. Grant Electron and hole ionization rates in epitaxial silicon at high electric fields , 1973 .

[19]  K. K. Thornber,et al.  Relation of drift velocity to low‐field mobility and high‐field saturation velocity , 1980 .

[20]  T. H. Ning,et al.  Hot-electron emission from silicon into silicon dioxide , 1978 .

[21]  A. Gossard,et al.  Observation of Magnetophonon Resonances in a Two-Dimensional Electronic System , 1980 .

[22]  C. R. Crowell,et al.  Normalized theory of impact ionization and velocity saturation in nonpolar semiconductors via a Markov chain approach , 1979 .

[23]  W. Shockley Problems related to p-n junctions in silicon , 1961 .

[24]  G. A. Baraff,et al.  Distribution Functions and Ionization Rates for Hot Electrons in Semiconductors , 1962 .

[25]  R. A. Logan,et al.  Ionization Rates of Holes and Electrons in Silicon , 1964 .

[26]  P. A. Wolff,et al.  Theory of Electron Multiplication in Silicon and Germanium , 1954 .

[27]  R. A. Kokosa,et al.  Avalanche breakdown of diffused silicon p-n junctions , 1966 .

[28]  F. Capasso,et al.  Temperature dependence of impact ionisation rates in GaAs between 20° and 200°C , 1979 .

[29]  K. Thornber High-field electronic conduction in insulators , 1978 .

[30]  W. C. Johnson,et al.  Use of a Schottky barrier to measure impact ionization coefficients in semiconductors , 1973 .

[31]  O. Christensen,et al.  Quantum efficiency of the internal photoelectric effect in silicon and germanium , 1976 .

[32]  J. R. Schrieffer,et al.  Effective Carrier Mobility in Surface-Space Charge Layers , 1955 .

[33]  C. Jacoboni Generalization of Fick's Law for Non‐Local Complex Diffusion in Semiconductors , 1974 .

[34]  B. Alder,et al.  Modification of Fick's Law , 1979 .

[35]  J. G. Ruch,et al.  Electron dynamics in short channel field-effect transistors , 1972 .

[36]  I. Lindau,et al.  Unified Mechanism for Schottky-Barrier Formation and III-V Oxide Interface States , 1980 .

[37]  A. G. Chynoweth,et al.  Ionization Rates for Electrons and Holes in Silicon , 1958 .

[38]  E. Kane Electron Scattering by Pair Production in Silicon , 1967 .

[39]  A. G. Chynoweth,et al.  Threshold Energy for Electron-Hole Pair-Production by Electrons in Silicon , 1957 .

[40]  R. V. Overstraeten,et al.  Measurement of the ionization rates in diffused silicon p-n junctions , 1970 .

[41]  S. A. Abbas,et al.  Hot‐carrier instability in IGFET’s , 1975 .

[42]  R. Van Overstraeten,et al.  Charge multiplication in silicon p-n junctions☆ , 1963 .