Overview of the Voyager ultraviolet spectrometry results through Jupiter encounter

The Voyager ultraviolet spectrometers (UVS) have been making almost continuous observations, in the 500-A to 1700-A wavelength range, of sources in the solar system and galaxy since launch in 1977. Due to their sensitivity, stability, and dynamic range, the spectrometers have made a remarkable number of discoveries pertaining to the Jupiter system, the interstellar medium, astronomical, and astrophysical sources. The most surprising general aspect of these results has been the wide variety of emission processes and species which have been observed. On Jupiter's disc, the emissions detected to date are H Lyman α, H Lyman β, He (584 A), and the H2 Lyman and Werner bands. The atomic emissions are excited by resonance scattering of sunlight, while the H2 bands appear to be excited by particle precipitation. On the nightside disc, only H Lyman α is present. Jupiter's auroral region is clearly delineated by intense emissions of H and H2 bands on both dayside and nightside of the planet. Emission from He is also present in the auroral regions. At Jupiter, the atmosphere was also probed by means of solar and stellar occultation experiments. The solar occultation has revealed the distribution of H2 and H in the upper atmosphere, while the stellar occultation has probed the structure of the upper mesosphere and lower thermosphere. Current analysis indicates an eddy diffusion coefficient ∼106 cm² s−1 with a mesospheric temperature ∼200 K. The solar occultation analysis suggests an exospheric temperature of 1450±300 K. The thermospheric lapse rate appears to be ∼1 K/km. The Lyman α observations of the disc have revealed a longitudinal asymmetry in H which may reflect longitudinal asymmetries in Jupiter's magnetosphere. Strong EUV emission from a plasma torus at the orbit of Io has been observed in transitions of sulfur and oxygen ions with a possible small contribution from potassium. The effective electron temperature of the dense regions of the plasma is estimated to be 8 × 104 K. No localized EUV emission has been detected from Io, limiting mass loading at Io to ∼1027 ions s−1. The partitioning of ion sub-species shows deviation from pure collisional equilibrium, but preliminary analysis indicates a low diffusive loss rate. The radiative cooling rate of the torus is ∼3 × 1012 W. The appearance of the entire sky in the outer solar system has been mapped in the emission lines of He (584 A) and H Lyα (1216 A) arising from resonant scattering of the solar lines by neutral interstellar hydrogen and helium entering the solar system. Diffuse galactic EUV emission has been measured in a number of selected directions. Stellar photospheric emissions shortward of the Lyman limit of atomic hydrogen at 912 A have been measured. Finally, spectral images, in several emission lines, have been obtained of the Cygnus Loop supernova remnant. Sections of this article review the progress in the study of these subjects and the relationships of the EUV results to the other Voyager experiments. We include a discussion of the characteristics of the instrument and the methods of spectral analysis to verify the integrity of the reported results.

[1]  D. Shemansky,et al.  The Voyager 1 EUV spectrum of the Io plasma torus , 1981 .

[2]  H. Bridge,et al.  A survey of the plasma electron environment of Jupiter: A view from Voyager , 1981 .

[3]  S. Atreya,et al.  Jupiter - Structure and composition of the upper atmosphere , 1981 .

[4]  S. Atreya,et al.  Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager ultraviolet stellar occultation experiment , 1981 .

[5]  L. Horn,et al.  Infrared observations of the saturnian system from voyager 1. , 1981, Science.

[6]  Bill R. Sandel,et al.  The Jovian hydrogen bulge: Evidence for co-rotating magnetospheric convection , 1981 .

[7]  D. Shemansky Mass-loading and diffusion-loss rates of the Io plasma torus , 1980 .

[8]  A. Lane,et al.  Observations from earth orbit and variability of the polar aurora on Jupiter , 1980 .

[9]  J. McConnell,et al.  Airglow from Jupiter's nightside and crescent: Ultraviolet spectrometer observations from Voyager 2 , 1980 .

[10]  J. G. Timothy,et al.  The solar spectral irradiance 1200–2550 Å at solar maximum , 1980 .

[11]  D. Strobel,et al.  Hydrocarbon photochemistry and Lyman alpha albedo of Jupiter , 1980 .

[12]  J. C. Raymond,et al.  Ultraviolet observations of the Cygnus Loop , 1980 .

[13]  B. Conrath,et al.  Albedo, internal heat, and energy balance of Jupiter: Preliminary results of the Voyager Infrared Investigation , 1980 .

[14]  J. McConnell,et al.  Voyager U.V. spectrometer observations of He 584 A dayglow at Jupiter , 1980 .

[15]  A. Broadfoot,et al.  An upper limit on the EUV flux from HD192273 , 1980, Nature.

[16]  D. Strobel,et al.  Properties of the Io plasma torus inferred from Voyager EUV data , 1980 .

[17]  M. Davis,et al.  Optical detection of a fast shock wave associated with the Cygnus Loop , 1980 .

[18]  Laurence M. Trafton,et al.  The Jovian SII torus: Its longitudinal asymmetry , 1980 .

[19]  J. Trauger,et al.  A study of the Jovian forbidden line S II nebula at high spectral resolution , 1980 .

[20]  D. Shemansky Radiative cooling efficiencies and predicted spectra of species of the IO plasma torus , 1980 .

[21]  T. Hill Corotation Lag in Jupiter's Magnetosphere: Comparison of Observation and Theory , 1980, Science.

[22]  C. Pilcher Images of Jupiter's Sulfur Ring , 1980, Science.

[23]  S. Parsons,et al.  HD 149499 B - The hottest white dwarf , 1979 .

[24]  W. Cochran,et al.  Variability of Lyman-alpha emission from Jupiter. , 1979 .

[25]  H. Keller,et al.  Multiple scattering of solar resonance radiation in the nearby interstellar medium. I , 1979 .

[26]  S. Bowyer,et al.  Interstellar absorption of the extreme ultraviolet flux from two hot white dwarfs. , 1979 .

[27]  S. Atreya,et al.  Jovian upper atmospheric temperature measurement by the Voyager 1 UV spectrometer , 1979 .

[28]  G. Wegner,et al.  The high-latitude EUV source HD192273 as a low-mass binary , 1979, Nature.

[29]  Satyandra K. Gupta,et al.  Identification of gaseous SO2 and new upper limits for other gases on Io , 1979, Nature.

[30]  S. Kumar The stability of an SO2 atmosphere on Io , 1979, Nature.

[31]  S. Atreya,et al.  An interpretation of the Voyager measurement of jovian electron density profiles , 1979, Nature.

[32]  C. Sagan,et al.  Volcanic resurfacing rates and implications for volatiles on Io , 1979, Nature.

[33]  F. Bagenal,et al.  In situidentification of various ionic species in Jupiter's magnetosphere , 1979, Nature.

[34]  B. Tsurutani,et al.  Diffuse Jovian aurora influenced by plasma injection from Io , 1979 .

[35]  Bill R. Sandel,et al.  Voyager spectral observations of the Cygnus Loop nebula, 600 - 1700 Å. , 1979 .

[36]  S. Bowyer,et al.  The local interstellar helium density - Corrected , 1979 .

[37]  J. W. Chamberlain,et al.  Jovian longitudinal asymmetry in Io-related and Europa-related auroral hot spots , 1979 .

[38]  N. Gehrels,et al.  Voyager 1: Energetic Ions and Electrons in the Jovian Magnetosphere , 1979, Science.

[39]  J. Blamont,et al.  Extreme Ultraviolet Observations from Voyager 1 Encounter with Jupiter , 1979, Science.

[40]  G. E. Wood,et al.  Radio Science with Voyager 1 at Jupiter: Preliminary Profiles of the Atmosphere and Ionosphere , 1979, Science.

[41]  R. McNutt,et al.  Plasma Observations Near Jupiter: Initial Results from Voyager 1 , 1979, Science.

[42]  P. Gierasch,et al.  Infrared Observations of the Jovian System from Voyager 1 , 1979, Science.

[43]  J. B. Oke,et al.  Ultraviolet spectrophotometry of degenerate stars , 1979 .

[44]  A. Broadfoot,et al.  Signatures of solar wind latitudinal structure in interplanetary Lyman-alpha emissions - Mariner 10 observations , 1979 .

[45]  S. Bowyer,et al.  X-ray emission from RS CVn systems - A progress report , 1978 .

[46]  D. Koester,et al.  EFFECTIVE TEMPERATURES OF HOT WHITE-DWARFS , 1978 .

[47]  J. Linsky,et al.  Ultraviolet observations of cool stars. VII - Local interstellar hydrogen and deuterium Lyman-alpha , 1978 .

[48]  A. Broadfoot,et al.  Evidence from Mariner 10 of Solar Wind Flux Depletion at High Ecliptic Latitudes , 1978 .

[49]  A. Broadfoot,et al.  Hydrogen Lβ and Lα emission lines observed from the interplanetary medium by the Voyager UV spectrometer , 1978, Nature.

[50]  R. Anderson,et al.  Copernicus observations of interstellar matter in the direction of HR 1099 , 1978 .

[51]  A. Broadfoot,et al.  The interstellar wind - Mariner 10 measurements of hydrogen /1216 A/ and helium /584 A/ interplanetary emission , 1978 .

[52]  J. Ajello An interpretation of Mariner 10 helium (584 Å) and hydrogen (1216 Å) interplanetary emission observations. , 1978 .

[53]  G. Thomas,et al.  The Interstellar Wind and its Influence on the Interplanetary Environment , 1978 .

[54]  S. Bowyer,et al.  Possible detection of an extreme-ultraviolet source at 500 A , 1978 .

[55]  S. Atreya,et al.  Search for Jovian auroral hot spots , 1977 .

[56]  S. Srivastava,et al.  Experimental differential and integral electron impact cross sections for the B /1-Sigma-u +/ state of H2 in the intermediate-energy region , 1977 .

[57]  T. Holzer Neutral hydrogen in interplanetary space , 1977 .

[58]  A. Dalgarno,et al.  Ultraviolet spectrometer experiment for the Voyager mission , 1977 .

[59]  D. Hunten,et al.  Soft electrons as a possible heat source for Jupiter's thermosphere , 1977 .

[60]  R. J. Balon,et al.  Radial distribution of FE XIV emission in the Cygnus Loop , 1977 .

[61]  S. Bowyer,et al.  The local interstellar helium density , 1977 .

[62]  A. Broadfoot,et al.  Self-scanned anode array with a microchannel plate electron multiplier: the SSANACON. , 1977, Applied optics.

[63]  A. Broadfoot,et al.  Microchannel plate life tests. , 1977, Applied optics.

[64]  R. Henry Far-Ultraviolet Studies. I. Predicted Far-Ultraviolet Interstellar Radiation Field , 1977 .

[65]  R. Meier Some optical and kinetic properties of the nearby interstellar gas. , 1977 .

[66]  S. Atreya,et al.  Electron temperatures in the Jovian ionosphere , 1976 .

[67]  S. Bowyer,et al.  Upper limits to the interstellar radiation field between 775 and 1050 A , 1976 .

[68]  G. Benedict,et al.  Skylab ultraviolet stellar spectra - A new white dwarf, HD 149499 B , 1976 .

[69]  Stuart Bowyer,et al.  An intense extreme-ultraviolet source in Cetus. , 1976 .

[70]  H. Fahr,et al.  Revised interstellar neutral helium/hydrogen density ratios and the interstellar UV-radiation field , 1976 .

[71]  Stuart Bowyer,et al.  Discovery of a nonsolar extreme-ultraviolet source , 1976 .

[72]  R. Bohlin Copernicus observations of interstellar absorption at Lyman alpha , 1975 .

[73]  J. Silk,et al.  On the nature of the intercloud medium , 1975 .

[74]  C. S. Weller,et al.  Erratum: Observations of Helium in the Interplanetary/interstellar Wind: the Solar-Wake Effect , 1974 .

[75]  P. Gierasch,et al.  Waves in the Jovian upper atmosphere , 1974 .

[76]  R. Carlson,et al.  Pioneer 10 ultraviolet photometer observations at Jupiter encounter , 1974 .

[77]  M. Jura,et al.  Formation and destruction rates of interstellar H2 , 1974 .

[78]  C. Sagan,et al.  The occultation of beta Scorpii by Jupiter. II. The hydrogen--helium abundance in the Jovian atmosphere , 1974 .

[79]  S. Bowyer,et al.  Cosmic Far Ultraviolet Background , 1974, Nature.

[80]  H. Fahr The extraterrestrial UV-background and the nearby interstellar medium , 1974 .

[81]  J. C. Bhattacharyya,et al.  An Atmosphere on Ganymede from Its Occultation of SAO 186800 on 7 June 1972 , 1973, Science.

[82]  D. Hunten,et al.  The Lyman-Alpha Albedo of Jupiter , 1973 .

[83]  E. Stone,et al.  Excitation of the Werner bands of H2 by electron impact. , 1972 .

[84]  R. Carlson,et al.  The extreme ultraviolet dayglow of Jupiter , 1971 .

[85]  G. Thomas,et al.  OGO-5 measurements of the Lyman-alpha sky background in 1970 and 1971 , 1971 .

[86]  M. McElroy,et al.  The Absorption of Extreme Ultraviolet Solar Radiation by Jupiter's Upper Atmosphere , 1969 .

[87]  A. C. Allison,et al.  Band oscillator strengths and transition probabilities for the Lyman and Werner systems of H2, HD, and D2 , 1969 .

[88]  D. Hunten The Upper Atmosphere of Jupiter , 1969 .

[89]  E. Parker THE STELLAR WIND REGIONS , 1961 .

[90]  Jr Leverett Davis,et al.  INTERPLANETARY MAGNETIC FIELDS AND COSMIC RAYS , 1955 .

[91]  J. W. Chamberlain The excitation of the Network nebulae. , 1952 .

[92]  C. Pilcher,et al.  Emissions from neutrals and ions in the Jovian magnetosphere , 1982 .

[93]  D. Strobel,et al.  Discovery of a longitudinal asymmetry in the H Lyman‐alpha brightness of Jupiter , 1980 .

[94]  J. D. Sullivan,et al.  Spatial distribution of plasma in the Io Torus , 1980 .

[95]  J. Muller,et al.  Voyager observations of small-scale waves in the equatorial region of the jovian atmosphere , 1979, Nature.

[96]  R. Petre,et al.  X-ray image of the Cygnus Loop , 1979 .

[97]  A. Broadfoot,et al.  Voyager observations of the interstellar medium in the 500‐ to 1700‐Å spectral region , 1979 .

[98]  S. Bowyer,et al.  Extreme Ultraviolet Observations of White Dwarfs , 1977 .

[99]  L. Auer,et al.  A self-consistent model-atmosphere analysis of the EUV white dwarf HZ 43 , 1977 .

[100]  M. McElroy,et al.  Stability of an oxygen atmosphere on ganymede , 1977 .

[101]  J. Veverka,et al.  Stellar and spacecraft occultations by Jupiter - A critical review of derived temperature profiles , 1976 .

[102]  R. Carlson,et al.  Pioneer 10 ultraviolet photometer observations of Jupiter - The helium to hydrogen ratio , 1976 .

[103]  S. Atreya,et al.  Model ionospheres of Jupiter , 1976 .

[104]  R. F. Donnelly,et al.  The 1-3000 Å solar flux for a moderate level of solar activity for use in modeling the ionosphere and upper atmosphere , 1973 .

[105]  W. Axford The interaction of the solar wind with the interstellar medium , 1972 .

[106]  J. E. Blamont,et al.  EVIDENCE FOR A SOURCE OF AN EXTRATERRESTRIAL HYDROGEN LYMAN-ALPHA EMISSION: THE INTERSTELLAR WIND. , 1971 .

[107]  T. L. Stephens,et al.  DISCRETE ABSORPTION AND PHOTODISSOCIATION OF MOLECULAR HYDROGEN. , 1970 .

[108]  R. Parker A MODEL FOR THE ''FILAMENTS'' IN THE CYGNUS LOOP. , 1967 .