Multidimensional Riemann problem with self-similar internal structure. Part II - Application to hyperbolic conservation laws on unstructured meshes

Multidimensional Riemann solvers that have internal sub-structure in the strongly-interacting state have been formulated recently (D.S. Balsara (2012, 2014) 5,16). Any multidimensional Riemann solver operates at the grid vertices and takes as its input all the states from its surrounding elements. It yields as its output an approximation of the strongly interacting state, as well as the numerical fluxes. The multidimensional Riemann problem produces a self-similar strongly-interacting state which is the result of several one-dimensional Riemann problems interacting with each other. To compute this strongly interacting state and its higher order moments we propose the use of a Galerkin-type formulation to compute the strongly interacting state and its higher order moments in terms of similarity variables. The use of substructure in the Riemann problem reduces numerical dissipation and, therefore, allows a better preservation of flow structures, like contact and shear waves. In this second part of a series of papers we describe how this technique is extended to unstructured triangular meshes. All necessary details for a practical computer code implementation are discussed. In particular, we explicitly present all the issues related to computational geometry. Because these Riemann solvers are Multidimensional and have Self-similar strongly-Interacting states that are obtained by Consistency with the conservation law, we call them MuSIC Riemann solvers. (A video introduction to multidimensional Riemann solvers is available on http://www.nd.edu/~dbalsara/Numerical-PDE-Course.)The MuSIC framework is sufficiently general to handle general nonlinear systems of hyperbolic conservation laws in multiple space dimensions. It can also accommodate all self-similar one-dimensional Riemann solvers and subsequently produces a multidimensional version of the same. In this paper we focus on unstructured triangular meshes. As examples of different systems of conservation laws we consider the Euler equations of compressible gas dynamics as well as the equations of ideal magnetohydrodynamics (MHD). Several stringent test problems are solved for both PDE systems.

[1]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[2]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[3]  R. LeVeque Wave Propagation Algorithms for Multidimensional Hyperbolic Systems , 1997 .

[4]  Dinshaw S. Balsara,et al.  A stable HLLC Riemann solver for relativistic magnetohydrodynamics , 2014, J. Comput. Phys..

[5]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[6]  A. Scott,et al.  Solitons and the Inverse Scattering Transform (Mark J. Ablowitz and Harvey Segur) , 1983 .

[7]  Dinshaw S. Balsara,et al.  Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics , 2012, J. Comput. Phys..

[8]  A. N. Kraiko,et al.  Numerical solution of multidimensional problems of gas dynamics , 1976 .

[9]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[10]  Alexandre J. Chorin,et al.  Random choice solution of hyperbolic systems , 1976 .

[11]  E. Toro,et al.  Restoration of the contact surface in the HLL-Riemann solver , 1994 .

[12]  Pekka Janhunen,et al.  HLLC solver for ideal relativistic MHD , 2007, J. Comput. Phys..

[13]  Dinshaw Balsara,et al.  Divergence-free adaptive mesh refinement for Magnetohydrodynamics , 2001 .

[14]  Aramais R. Zakharian,et al.  Two-dimensional Riemann solver for Euler equations of gas dynamics , 2001 .

[15]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[16]  Alexander Kurganov,et al.  Semidiscrete Central-Upwind Schemes for Hyperbolic Conservation Laws and Hamilton-Jacobi Equations , 2001, SIAM J. Sci. Comput..

[17]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[18]  Chi-Wang Shu,et al.  Efficient Implementation of Weighted ENO Schemes , 1995 .

[19]  Edouard Audit,et al.  A Simple Two-Dimensional Extension of the HLLE Riemann Solver for Gas Dynamics , 2014 .

[20]  E. F. Toro,et al.  The development of a Riemann solver for the steady supersonic Euler equations , 1994, The Aeronautical Journal (1968).

[21]  R. Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTDIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (II) : SOLUTION DU PROBLEME DE RIEM ANN APPROCHE , 1994 .

[22]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[23]  Chi-Wang Shu,et al.  The Runge-Kutta Discontinuous Galerkin Method for Conservation Laws V , 1998 .

[24]  Dinshaw S. Balsara,et al.  Multidimensional Riemann problem with self-similar internal structure. Part I - Application to hyperbolic conservation laws on structured meshes , 2014, J. Comput. Phys..

[25]  Philip L. Roe,et al.  A multidimensional flux function with applications to the Euler and Navier-Stokes equations , 1993 .

[26]  S. Komissarov,et al.  A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .

[27]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows – II. Magnetohydrodynamics , 2006 .

[28]  Eleuterio F. Toro,et al.  ADER: Arbitrary High Order Godunov Approach , 2002, J. Sci. Comput..

[29]  E. Tadmor,et al.  Non-oscillatory central differencing for hyperbolic conservation laws , 1990 .

[30]  Gérard Gallice,et al.  Roe Matrices for Ideal MHD and Systematic Construction of Roe Matrices for Systems of Conservation Laws , 1997 .

[31]  Rémi Abgrall,et al.  Multidimensional HLLC Riemann solver for unstructured meshes - With application to Euler and MHD flows , 2014, J. Comput. Phys..

[32]  S. Osher,et al.  Upwind difference schemes for hyperbolic systems of conservation laws , 1982 .

[33]  Michael Dumbser,et al.  FORCE schemes on unstructured meshes I: Conservative hyperbolic systems , 2009, J. Comput. Phys..

[34]  Peter A. Jacobs Approximate Riemann solver for hypervelocity flows , 1991 .

[35]  Michael Dumbser,et al.  Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics , 2008, Journal of Computational Physics.

[36]  P. Colella A Direct Eulerian MUSCL Scheme for Gas Dynamics , 1985 .

[37]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[38]  Michael Dumbser,et al.  High‐order ADER‐WENO ALE schemes on unstructured triangular meshes—application of several node solvers to hydrodynamics and magnetohydrodynamics , 2013, 1310.7256.

[39]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[40]  P. Frederickson,et al.  Higher order solution of the Euler equations on unstructured grids using quadratic reconstruction , 1990 .

[41]  Eleuterio F. Toro,et al.  Upwind-biased FORCE schemes with applications to free-surface shallow flows , 2010, J. Comput. Phys..

[42]  Burton Wendroff,et al.  A two-dimensional HLLE riemann solver and associated godunov-type difference scheme for gas dynamics☆ , 1999 .

[43]  Dinshaw S. Balsara,et al.  Linearized Formulation of the Riemann Problem for Adiabatic and Isothermal Magnetohydrodynamics , 1998 .

[44]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[45]  Philip L. Roe,et al.  Discrete models for the numerical analysis of time-dependent multidimensional gas dynamics , 1986 .

[46]  P. Londrillo,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002 .

[47]  K. Kusano,et al.  A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics , 2005 .

[48]  Dinshaw S. Balsara Multidimensional HLLE Riemann solver: Application to Euler and magnetohydrodynamic flows , 2010, J. Comput. Phys..

[49]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[50]  J. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport , 2005, astro-ph/0501557.

[51]  Andrea Mignone,et al.  A five‐wave Harten–Lax–van Leer Riemann solver for relativistic magnetohydrodynamics , 2009 .

[52]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[53]  Derek M. Causon,et al.  On the Choice of Wavespeeds for the HLLC Riemann Solver , 1997, SIAM J. Sci. Comput..

[54]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[55]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[56]  G. Bodo,et al.  An HLLC Solver for Relativistic Flows – II . , 2006 .

[57]  Rémi Abgrall,et al.  A Cell-Centered Lagrangian Scheme for Two-Dimensional Compressible Flow Problems , 2007, SIAM J. Sci. Comput..

[58]  Shengtai Li An HLLC Riemann solver for magneto-hydrodynamics , 2005 .

[59]  Gerald Warnecke,et al.  Finite volume evolution Galerkin methods for Euler equations of gas dynamics , 2002 .

[60]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[61]  J. Saltzman,et al.  An unsplit 3D upwind method for hyperbolic conservation laws , 1994 .

[62]  E. Toro,et al.  Solution of the generalized Riemann problem for advection–reaction equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[63]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[64]  Stefi A. Baum,et al.  A DETAILED STUDY OF THE LOBES OF ELEVEN POWERFUL RADIO GALAXIES , 2009, 0912.3499.

[65]  Rémi Abgrall,et al.  On essentially non-oscillatory schemes on unstructured meshes: analysis and implementation , 1994 .

[66]  Katharine Gurski,et al.  An HLLC-Type Approximate Riemann Solver for Ideal Magnetohydrodynamics , 2001, SIAM J. Sci. Comput..

[67]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[68]  Dinshaw S. Balsara A two-dimensional HLLC Riemann solver for conservation laws: Application to Euler and magnetohydrodynamic flows , 2012, J. Comput. Phys..

[69]  Michael Dumbser,et al.  Efficient implementation of ADER schemes for Euler and magnetohydrodynamical flows on structured meshes - Speed comparisons with Runge-Kutta methods , 2013, J. Comput. Phys..

[70]  Carole Rosier,et al.  Multi-dimensional Riemann problems for linear hyperbolic systems , 1996 .

[71]  Eleuterio F. Toro,et al.  AOn WAF-Type Schemes for Multidimensional Hyperbolic Conservation Laws , 1997 .

[72]  Michael Fey,et al.  Multidimensional Upwinding. Part I. The Method of Transport for Solving the Euler Equations , 1998 .

[73]  P. Colella Multidimensional upwind methods for hyperbolic conservation laws , 1990 .

[74]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[75]  Bernd Einfeld On Godunov-type methods for gas dynamics , 1988 .

[76]  Dinshaw Balsara,et al.  Second-Order-accurate Schemes for Magnetohydrodynamics with Divergence-free Reconstruction , 2003, astro-ph/0308249.

[77]  Michael Dumbser,et al.  Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers , 2013, J. Comput. Phys..

[78]  Rémi Abgrall APPROXIMATION DU PROBLEME DE RIEMANN VRAIMENT MULTIDIMENSIONNEL DES EQUATIONS D'EULER PAR UNE METHODE DE TYPE ROE (I) : LA LINEARISATION , 1994 .

[79]  E. Tadmor,et al.  New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection—Diffusion Equations , 2000 .

[80]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows , 2002 .

[81]  Dinshaw S. Balsara Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics , 2009, J. Comput. Phys..

[82]  James P. Collins,et al.  Numerical Solution of the Riemann Problem for Two-Dimensional Gas Dynamics , 1993, SIAM J. Sci. Comput..

[83]  Michael Fey,et al.  Multidimensional Upwinding. Part II. Decomposition of the Euler Equations into Advection Equations , 1998 .

[84]  Universitat d'Alacant,et al.  RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER , 2009, 0912.4692.