Violating the isolated pentagon rule (IPR): endohedral non-IPR C98 cages of Gd2@C98.

The geometric, electronic structure, and thermodynamic stability of large gadolinium-containing endohedral metallofullerenes, Gd(2)@C(98), have been systematically investigated by comprehensive density functional theory calculations combined with statistical mechanics treatments. The Gd(2)@C(2)(230924)-C(98) structure, which satisfies the isolated-pentagon rule (IPR), is determined to possess the lowest energy followed with some stable non-IPR isomers. In order to clarify the relative stabilities at elevated temperatures, entropy contributions are taken into account on the basis of the Gibbs energy at the B3LYP level for the first time. Interestingly, a novel non-IPR Gd(2)@C(1)(168785)-C(98) isomer which has one pair of pentagon adjacency is more thermodynamically stable than the lowest energy IPR species within a wide temperature interval related to fullerene formation. Therefore, the Gd(2)@C(1)(168785)-C(98) is predicted to be the most proper isomer obtained experimentally, which is the largest non-IPR carbon cage found so far. Our findings demonstrate that interaction between metals and carbon cages could stabilize the fused pentagons effectively, and thus, the non-IPR isomers should not be ignored in some cases of endohedral metallofullerenes. The IR features of Gd(2)@C(98) are simulated to assist its future experimental characterization.

[1]  M. Sakata,et al.  Sc2 dimer in IPR-violated C66 fullerene: a covalent bonded metallofullerene , 2003 .

[2]  Shangfeng Yang,et al.  Endohedral clusterfullerenes--playing with cluster and cage sizes. , 2007, Physical chemistry chemical physics : PCCP.

[3]  Xing Lu,et al.  Bis-carbene adducts of non-IPR La2@C72: localization of high reactivity around fused pentagons and electrochemical properties. , 2008, Angewandte Chemie.

[4]  Xing Lu,et al.  Chemistry of endohedral metallofullerenes: the role of metals. , 2011, Chemical communications.

[5]  Eiji Osawa,et al.  Can a metal-metal bond hop in the fullerene cage? , 2011, Chemistry.

[6]  N. Martín Fullerene C72Cl4: the exception that proves the rule? , 2011, Angewandte Chemie.

[7]  Patrick W. Fowler,et al.  Pentagon adjacency as a determinant of fullerene stability , 1999 .

[8]  L. Echegoyen,et al.  New M(3)N@C(2n) endohedral metallofullerene families (M=Nd, Pr, Ce; n=40-53): expanding the preferential templating of the C(88) cage and approaching the C(96) cage. , 2008, Chemistry.

[9]  Lothar Dunsch,et al.  Structure, stability, and cluster-cage interactions in nitride clusterfullerenes M3N@C2n (M = Sc, Y; 2n = 68-98): a density functional theory study. , 2007, Journal of the American Chemical Society.

[10]  Thomas R. Cundari,et al.  Effective core potential methods for the lanthanides , 1993 .

[11]  Hisanori Shinohara,et al.  Structure of a missing-caged metallofullerene: La2@C72. , 2003, Journal of the American Chemical Society.

[12]  Luis Echegoyen,et al.  Large metal ions in a relatively small fullerene cage: the structure of Gd3N@C2(22010)-C78 departs from the isolated pentagon rule. , 2009, Journal of the American Chemical Society.

[13]  M. Sakata,et al.  A Scandium Carbide Endohedral Metallofullerene: (Sc2 C2 )@C84. , 2001, Angewandte Chemie.

[14]  K. Suenaga,et al.  EELS and 13C NMR characterization of pure Ti2@C80 metallofullerene. , 2001, Journal of the American Chemical Society.

[15]  Z. Slanina,et al.  C98 IPR isomers: Gibbs-energy based relative stabilities , 2003 .

[16]  R. Smalley,et al.  Fullerenes with metals inside , 1991 .

[17]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[18]  H. Shinohara,et al.  Production, Separation, Isolation, and Spectroscopic Study of Dysprosium Endohedral Metallofullerenes , 2000 .

[19]  Eiji Ōsawa,et al.  Enthalpy–entropy interplay for C36 cages: B3LYP/6-31G* calculations , 2000 .

[20]  A. Balch,et al.  Detection of a family of gadolinium-containing endohedral fullerenes and the isolation and crystallographic characterization of one member as a metal-carbide encapsulated inside a large fullerene cage. , 2008, Journal of the American Chemical Society.

[21]  H. Shinohara,et al.  Mono-, Di- and Trierbium Endohedral Metallofullerenes: Production, Separation, Isolation, and Spectroscopic Study , 2001 .

[22]  Patrick W. Fowler,et al.  Increasing cost of pentagon adjacency for larger fullerenes , 1996 .

[23]  W. Harneit,et al.  Phosphorous trapped within buckminsterfullerene , 2002 .

[24]  A. Rodríguez‐Fortea,et al.  Large fullerenes stabilized by encapsulation of metallic clusters. , 2007, Chemical communications.

[25]  Eiji Ōsawa,et al.  Endohedral Metallofullerenes. Are the Isolated Pentagon Rule and Fullerene Structures Always Satisfied , 1997 .

[26]  A. Balch,et al.  Isolation and structural characterization of the molecular nanocapsule Sm(2)@D(3d)(822)-C(104). , 2009, Angewandte Chemie.

[27]  Shangfeng Yang,et al.  Metal nitride cluster fullerenes: their current state and future prospects. , 2007, Small.

[28]  Shigeru Nagase,et al.  Di-lanthanide encapsulated into large fullerene C100: a DFT survey. , 2011, Physical chemistry chemical physics : PCCP.

[29]  E. Hajdu,et al.  Materials science: A stable non-classical metallofullerene family , 2000, Nature.

[30]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[31]  T. Clark,et al.  Stabilization of Atomic Nitrogen Inside C60 , 1997 .

[32]  Yuji Kobayashi,et al.  Materials science: C66 fullerene encaging a scandium dimer , 2000, Nature.

[33]  Shuqing Sun,et al.  Recent progress in the studies of endohedral metallofullerenes , 2000 .

[34]  K. Iwasaki,et al.  Ultraviolet photoelectron spectra of Ti2@C80 , 2004 .

[35]  Martin Saunders,et al.  129Xe NMR spectrum of xenon inside C(60). , 2002, Journal of the American Chemical Society.

[36]  A. Rao,et al.  Lanthanum nitride endohedral fullerenes La3N@C2n (43 , 2008, Chemistry.

[37]  Fred Wudl,et al.  Chemistry of Nanocarbons: Akasaka/Chemistry of Nanocarbons , 2010 .

[38]  Shangfeng Yang,et al.  Di- and tridysprosium endohedral metallofullerenes with cages from C94 to C100. , 2006, Angewandte Chemie.

[39]  Tianming Zuo,et al.  New egg-shaped fullerenes: non-isolated pentagon structures of Tm3N@C(s)(51 365)-C84 and Gd3N@C(s)(51 365)-C84. , 2008, Chemical communications.

[40]  S. Nagase,et al.  La@C72 having a non-IPR carbon cage. , 2006, Journal of the American Chemical Society.

[41]  Martin Saunders,et al.  Incorporation of helium, neon, argon, krypton, and xenon into fullerenes using high pressure , 1994 .

[42]  R. Lauffer,et al.  Gadolinium(III) Chelates as MRI Contrast Agents: Structure, Dynamics, and Applications. , 1999, Chemical reviews.

[43]  Zdenek Slanina,et al.  Chemical understanding of a non-IPR metallofullerene: stabilization of encaged metals on fused-pentagon bonds in La2@C72. , 2008, Journal of the American Chemical Society.

[44]  C. de Graaf,et al.  Electronic structure and redox properties of metal nitride endohedral fullerenes M(3)N@C(2n) (M=Sc, Y, La, and Gd; 2n=80, 84, 88, 92, 96). , 2009, Chemistry.

[45]  Luis Echegoyen,et al.  Chemical, electrochemical, and structural properties of endohedral metallofullerenes. , 2009, Angewandte Chemie.

[46]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[47]  S. Nagase,et al.  Non-IPR endohedral fullerene Yb@C76: density functional theory characterization , 2011 .

[48]  Marilyn M. Olmstead,et al.  A distorted tetrahedral metal oxide cluster inside an icosahedral carbon cage. Synthesis, isolation, and structural characterization of Sc4(mu3-O)2@Ih-C80. , 2008, Journal of the American Chemical Society.

[49]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[50]  Xiang Zhao,et al.  On the structure and relative stability of C50 fullerenes. , 2005, The journal of physical chemistry. B.