An overview of nanotechnological applications in biomedical engineering

[1]  Bo Li,et al.  Targeting cancer stem cells with polymer nanoparticles for gastrointestinal cancer treatment , 2022, Stem Cell Research & Therapy.

[2]  P. Cullis,et al.  Exciting Times for Lipid Nanoparticles: How Canadian Discoveries Are Enabling Gene Therapies. , 2022, Molecular pharmaceutics.

[3]  Kosha J. Mehta Iron Oxide Nanoparticles in Mesenchymal Stem Cell Detection and Therapy , 2022, Stem Cell Reviews and Reports.

[4]  Shantanu H. Joshi,et al.  Neurological pathophysiology of SARS‐CoV‐2 and pandemic potential RNA viruses: a comparative analysis , 2021, FEBS letters.

[5]  Chankyu Park,et al.  Antiviral Potential of Nanoparticles—Can Nanoparticles Fight Against Coronaviruses? , 2020, Nanomaterials.

[6]  Zhenjie Liu,et al.  The Roles of Nanoparticles in Stem Cell-Based Therapy for Cardiovascular Disease , 2020, Frontiers in Bioengineering and Biotechnology.

[7]  S. Mitragotri,et al.  Targeting Strategies for Tissue-Specific Drug Delivery , 2020, Cell.

[8]  R. Hauser-Davis,et al.  Ecological Risks of Metal and Metalloid Contamination in the Rio Doce Estuary , 2020, Integrated environmental assessment and management.

[9]  Christy L Haynes,et al.  Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact. , 2019, Accounts of chemical research.

[10]  P. Cullis,et al.  Lipid Nanoparticles Enabling Gene Therapies: From Concepts to Clinical Utility. , 2018, Nucleic acid therapeutics.

[11]  Sarika Wairkar,et al.  Pramipexole dihydrochloride loaded chitosan nanoparticles for nose to brain delivery: Development, characterization and in vivo anti-Parkinson activity. , 2018, International journal of biological macromolecules.

[12]  G. Colombo,et al.  Surface-Modified Nanocarriers for Nose-to-Brain Delivery: From Bioadhesion to Targeting , 2018, Pharmaceutics.

[13]  F. Söylemezoğlu,et al.  A potential non‐invasive glioblastoma treatment: Nose‐to‐brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles , 2017, Journal of controlled release : official journal of the Controlled Release Society.

[14]  Hyo-Jick Choi,et al.  Respiratory Protection against Pandemic and Epidemic Diseases , 2017, Trends in Biotechnology.

[15]  Chun Gwon Park,et al.  Sinonasal Delivery of Resveratrol via Mucoadhesive Nanostructured Microparticles in a Nasal Polyp Mouse Model , 2017, Scientific Reports.

[16]  L. Cantu',et al.  The nasal delivery of nanoencapsulated statins – an approach for brain delivery , 2016, International journal of nanomedicine.

[17]  Xuesi Chen,et al.  Production and clinical development of nanoparticles for gene delivery , 2016, Molecular therapy. Methods & clinical development.

[18]  L. Motte,et al.  Synthesis of silver nanoparticles for the dual delivery of doxorubicin and alendronate to cancer cells. , 2015, Journal of materials chemistry. B.

[19]  P. Seeman Parkinson's disease treatment may cause impulse–control disorder via dopamine D3 receptors , 2015, Synapse.

[20]  Jie Tian,et al.  The enhanced chemotherapeutic effects of doxorubicin loaded PEG coated TiO2 nanocarriers in an orthotopic breast tumor bearing mouse model. , 2015, Journal of materials chemistry. B.

[21]  D. Govindaraju,et al.  Genetics, lifestyle and longevity: Lessons from centenarians , 2015, Applied & translational genomics.

[22]  Yu Liu,et al.  Mucin-controlled drug release from mucoadhesive phenylboronic acid-rich nanoparticles. , 2015, International journal of pharmaceutics.

[23]  Leaf Huang,et al.  Smart Polymeric Nanoparticles for Cancer Gene Delivery , 2014, Molecular pharmaceutics.

[24]  Miao Wu,et al.  Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. , 2015, Aquatic toxicology.

[25]  Ruchira Chakraborty,et al.  Mechanism of antibacterial activity of copper nanoparticles , 2014, Nanotechnology.

[26]  V. Ramakrishnan,et al.  Folate targeted PEGylated titanium dioxide nanoparticles as a nanocarrier for targeted paclitaxel drug delivery , 2013 .

[27]  H. Yang,et al.  Recent progress in biomedical applications of titanium dioxide. , 2013, Physical chemistry chemical physics : PCCP.

[28]  O. Baffa,et al.  Silver nanoparticles delivery system based on natural rubber latex membranes , 2013, Journal of Nanoparticle Research.

[29]  John A. Jansen,et al.  Understanding the role of nano-topography on the surface of a bone-implant. , 2013, Biomaterials science.

[30]  Frank Caruso,et al.  Emerging techniques in proteomics for probing nano-bio interactions. , 2012, ACS nano.

[31]  G. Mustafa,et al.  Development and evaluation of thymoquinone-encapsulated chitosan nanoparticles for nose-to-brain targeting: a pharmacoscintigraphic study , 2012, International journal of nanomedicine.

[32]  Tae-Hyun Nam,et al.  Role of subnano-, nano- and submicron-surface features on osteoblast differentiation of bone marrow mesenchymal stem cells. , 2012, Biomaterials.

[33]  M. Nireekshan Kumar,et al.  Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. , 2012, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[34]  G. Zhai,et al.  Advances in nanotechnology-based delivery systems for curcumin. , 2012, Nanomedicine.

[35]  O. Baffa,et al.  Synthesis and characterization of silver/alanine nanocomposites for radiation detection in medical applications: the influence of particle size on the detection properties. , 2012, Nanoscale.

[36]  Ryo Kawamura,et al.  A magnetically guided anti-cancer drug delivery system using porous FePt capsules. , 2012, Biomaterials.

[37]  Yong‐Young Noh,et al.  Production of graphene by exfoliation of graphite in a volatile organic solvent , 2011, Nanotechnology.

[38]  Vincent M Rotello,et al.  Nano meets biology: structure and function at the nanoparticle interface. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[39]  Manuel Desco,et al.  The application of nanoparticles in gene therapy and magnetic resonance imaging , 2011, Microscopy research and technique.

[40]  Guolin Tong,et al.  Preparation of ultrasonic-assisted high carboxylate content cellulose nanocrystals by TEMPO oxidation , 2011, BioResources.

[41]  Peter Wick,et al.  Nanotoxicology: an interdisciplinary challenge. , 2011, Angewandte Chemie.

[42]  S. Ghosh,et al.  Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. , 2011, ACS applied materials & interfaces.

[43]  Feixiang Wu,et al.  Hydrogen peroxide leaching of hydrolyzed titania residue prepared from mechanically activated Panzhihua ilmenite leached by hydrochloric acid , 2011 .

[44]  Cristina Rodríguez-Padilla,et al.  Antitumor activity of colloidal silver on MCF-7 human breast cancer cells , 2010, Journal of experimental & clinical cancer research : CR.

[45]  P. Venieratos,et al.  Photo-induced treatment of breast epithelial cancer cells using nanostructured titanium dioxide solution , 2010 .

[46]  Lourdes Díaz-Rodríguez,et al.  Effect of roughness, wettability and morphology of engineered titanium surfaces on osteoblast-like cell adhesion , 2010 .

[47]  Lyndon Jones,et al.  The Impact of Contact Angle on the Biocompatibility of Biomaterials , 2010, Optometry and vision science : official publication of the American Academy of Optometry.

[48]  R Cingolani,et al.  Neurons sense nanoscale roughness with nanometer sensitivity , 2010, Proceedings of the National Academy of Sciences.

[49]  G. Oberdörster,et al.  Safety assessment for nanotechnology and nanomedicine: concepts of nanotoxicology , 2010, Journal of internal medicine.

[50]  V. S. Saji,et al.  Nanotechnology in biomedical applications: a review , 2010 .

[51]  M. Edirisinghe,et al.  Effect of heat treatment of nano-hydroxyapatite coatings prepared using electrohydrodynamic deposition , 2009 .

[52]  K. Healy,et al.  Controlling biological interfaces on the nanometer length scale. , 2009, Journal of biomedical materials research. Part A.

[53]  V. S. Saji,et al.  Electrochemical corrosion behaviour of nanotubular Ti–13Nb–13Zr alloy in Ringer’s solution , 2009 .

[54]  S. Mukherjee,et al.  Solid Lipid Nanoparticles: A Modern Formulation Approach in Drug Delivery System , 2009, Indian journal of pharmaceutical sciences.

[55]  V. S. Saji,et al.  Nanotubular oxide layer formation on Ti–13Nb–13Zr alloy as a function of applied potential , 2009 .

[56]  Peter Wipf,et al.  Nanoparticles in cellular drug delivery. , 2009, Bioorganic & medicinal chemistry.

[57]  Chunhua Lu,et al.  Synthesis and characterization of nano-sized ZnO powders by direct precipitation method , 2008 .

[58]  Lyndon F Cooper,et al.  Advancing dental implant surface technology--from micron- to nanotopography. , 2008, Biomaterials.

[59]  S. Bauer,et al.  Improved attachment of mesenchymal stem cells on super-hydrophobic TiO2 nanotubes. , 2008, Acta biomaterialia.

[60]  T. Ogawa,et al.  Ti Nano-nodular Structuring for Bone Integration and Regeneration , 2008, Journal of dental research.

[61]  D. Quéré Wetting and Roughness , 2008 .

[62]  J. Ong,et al.  Novel fabrication of nano-rod array structures on titanium and in vitro cell responses , 2008, Journal of materials science. Materials in medicine.

[63]  X. Chen,et al.  Nanosilver: a nanoproduct in medical application. , 2008, Toxicology letters.

[64]  Filip Braet,et al.  Carbon nanotubes for biological and biomedical applications , 2007 .

[65]  M. Jäger,et al.  Significance of Nano- and Microtopography for Cell-Surface Interactions in Orthopaedic Implants , 2007, Journal of biomedicine & biotechnology.

[66]  S. Kim,et al.  Enhancement of Lubrication Properties of Nano-oil by Controlling the Amount of Fullerene Nanoparticle Additives , 2007 .

[67]  Yusuke Arima,et al.  Effect of wettability and surface functional groups on protein adsorption and cell adhesion using well-defined mixed self-assembled monolayers. , 2007, Biomaterials.

[68]  P. Layrolle,et al.  Surface treatments of titanium dental implants for rapid osseointegration. , 2007, Dental materials : official publication of the Academy of Dental Materials.

[69]  Tejal A Desai,et al.  Influence of engineered titania nanotubular surfaces on bone cells. , 2007, Biomaterials.

[70]  S. Bhaduri,et al.  Osteoblast proliferation on neat and apatite-like calcium phosphate-coated titanium foam scaffolds , 2007 .

[71]  Ajay Kumar Gupta,et al.  Recent advances on surface engineering of magnetic iron oxide nanoparticles and their biomedical applications. , 2007, Nanomedicine.

[72]  M. Wood Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications , 2007, Journal of The Royal Society Interface.

[73]  Krishnan S. Raja,et al.  Electrodeposition of hydroxyapatite onto nanotubular TiO2 for implant applications , 2006 .

[74]  J. I. Qazi,et al.  Titanium alloys for biomedical applications , 2006 .

[75]  Hongwei Liao,et al.  Biomedical applications of plasmon resonant metal nanoparticles. , 2006, Nanomedicine.

[76]  C. D. Geddes,et al.  Metal-enhanced fluorescence from silver nanoparticle-deposited polycarbonate substrates , 2006 .

[77]  V. Truskett,et al.  Trends in imprint lithography for biological applications. , 2006, Trends in biotechnology.

[78]  V. Bagnato,et al.  The future of photodynamic therapy in oncology. , 2006, Future oncology.

[79]  Zhenxin Wang,et al.  Microarray-based detection of protein binding and functionality by gold nanoparticle probes. , 2005, Analytical chemistry.

[80]  B. Stoner,et al.  Template-directed assembly on an ordered microsphere array. , 2005, Langmuir.

[81]  T. Webster,et al.  Enhanced osteoblast adhesion on hydrothermally treated hydroxyapatite/titania/poly(lactide-co-glycolide) sol-gel titanium coatings. , 2005, Biomaterials.

[82]  K. Strebhardt,et al.  Highly Specific HER2-mediated Cellular Uptake of Antibody-modified Nanoparticles in Tumour Cells , 2004, Journal of drug targeting.

[83]  Thomas J Webster,et al.  Increased osteoblast adhesion on nanophase metals: Ti, Ti6Al4V, and CoCrMo. , 2004, Biomaterials.

[84]  M. Tonetti,et al.  Roughness response genes in osteoblasts. , 2004, Bone.

[85]  Thomas J. Webster,et al.  Helical rosette nanotubes: a more effective orthopaedic implant material , 2004 .

[86]  M. Kotaki,et al.  Recent advances in polymer nanofibers. , 2004, Journal of nanoscience and nanotechnology.

[87]  M. Tirrell,et al.  The role of surface science in bioengineered materials , 2002 .

[88]  D. Puleo,et al.  Understanding and controlling the bone-implant interface. , 1999, Biomaterials.

[89]  A. Wennerberg,et al.  A histomorphometric evaluation of screw-shaped implants each prepared with two surface roughnesses. , 1998, Clinical oral implants research.

[90]  H. Hansson,et al.  Osseointegrated titanium implants. Requirements for ensuring a long-lasting, direct bone-to-implant anchorage in man. , 1981, Acta orthopaedica Scandinavica.