A Simplified Picture for Transient Enhanced Diffusion of Boron in Silicon

In recent years, transistor junction formation in complementary metal oxide semiconductor devices by ion implantation has encountered serious limitations due to transient enhanced diffusion (TED) during the annealing step. Current models of TED rely heavily on detailed simulations of the complex diffusion-reaction network that governs TED, and often rely on fitted parameters whose values are uncertain. The present work uses a more rigorous set of rate parameters obtained from a maximum likelihood estimation to develop a relatively simple analytical treatment of boron TED that is capable of estimating the degree of profile spreading and the temperature at which TED should begin to occur significantly. The treatment suggests that reduction of TED should focus on implantation schemes and heating programs designed to decrease the number of clusters slightly smaller than the very largest.

[1]  K. Chang,et al.  First-principles study of the self-interstitial diffusion mechanism in silicon , 1998 .

[2]  Adel F. Sarofim,et al.  Activation energy distribution in temperature-programmed desorption : modeling and application to the soot-oxygen system , 1990 .

[3]  A. Hallén,et al.  Migration energy for the silicon self-interstitial , 1999 .

[4]  James V. Beck,et al.  Parameter Estimation in Engineering and Science , 1977 .

[5]  G. Bond Catalysis By Metals , 1962 .

[6]  H. Gossmann,et al.  B cluster formation and dissolution in Si: A scenario based on atomistic modeling , 1999 .

[7]  Mark E. Law,et al.  Continuum based modeling of silicon integrated circuit processing: An object oriented approach , 1998 .

[8]  Daniel F. Downey,et al.  Effects of “fast” rapid thermal anneals on sub-keV boron and BF2 ion implants , 1999 .

[9]  Modeling of {311} Defects , 1999 .

[10]  Dopant dose loss at the Si–SiO2 interface , 2000 .

[11]  M. D. Johnson,et al.  THE FRACTION OF SUBSTITUTIONAL BORON IN SILICON DURING ION IMPLANTATION AND THERMAL ANNEALING , 1998 .

[12]  J. Sudijono,et al.  Via Resistance Reduction using “Cool” PVD-Ta Processing , 2003 .

[13]  Van Vechten Ja Activation enthalpy of recombination-enhanced vacancy migration in Si. , 1988 .

[14]  R. Braatz,et al.  Parameter Sensitivity Analysis Applied to Modeling Transient Enhanced Diffusion and Activation of Boron in Silicon , 2003 .

[15]  Fumitaka Nishiyama,et al.  Lattice site location of ultra-shallow implanted B in Si using ion beam analysis , 2001 .

[16]  T. E. Haynes,et al.  Physical mechanisms of transient enhanced dopant diffusion in ion-implanted silicon , 1997 .

[17]  Edmund G Seebauer,et al.  Quantitative extraction of continuous distributions of energy states and pre-exponential factors from thermal desorption spectra , 1994 .

[18]  G. D. Watkins,et al.  SPIN RESONANCE IN ELECTRON IRRADIATED SILICON , 1959 .

[19]  R. Braatz,et al.  Ramp-Rate Effects on Transient Enhanced Diffusion and Dopant Activation , 2003 .

[20]  W. Windl,et al.  Ab initio modeling of boron clustering in silicon , 2000 .

[21]  F. Priolo,et al.  Room‐temperature migration and interaction of ion beam generated defects in crystalline silicon , 1996 .

[22]  M. Law,et al.  EVOLUTION OF 311 TYPE DEFECTS IN BORON-DOPED STRUCTURES : EXPERIMENTAL EVIDENCE OF BORON-INTERSTITIAL CLUSTER FORMATION , 1999 .

[23]  J. Poate,et al.  B diffusion and clustering in ion implanted Si: The role of B cluster precursors , 1997 .

[24]  Cluster ripening and transient enhanced diffusion in silicon , 1999 .

[25]  S. Chakravarthi,et al.  A simple continuum model for boron clustering based on atomistic calculations , 2001 .

[26]  P. Chi,et al.  Transient enhanced diffusion without {311} defects in low energy B+‐implanted silicon , 1995 .