Molecular gas masses of gamma-ray burst host galaxies

Context. Long gamma-ray bursts (GRBs) can potentially be used as a tool to study star formation and recent gas accretion onto galaxies. However, the information about gas properties of GRB hosts is scarce. In particular, very few carbon monoxide (CO) line detections of individual GRB hosts have been reported. It has also been suggested that GRB hosts have lower molecular gas masses than expected from their star formation rates (SFRs). Aims. The objectives of this paper are to analyse molecular gas properties of the first substantial sample of GRB hosts and test whether they are deficient in molecular gas. Methods. We obtained CO(2-1) observations of seven GRB hosts with the APEX and IRAM 30 m telescopes. We analysed these data together with all other hosts with previous CO observations. From these observations we calculated the molecular gas masses of these galaxies and compared them with the expected values based on their SFRs and metallicities. Reults. We obtained detections for 3 GRB hosts (980425, 080207, and 111005A) and upper limits for the remaining 4 (031203, 060505, 060814, and 100316D). In our entire sample of 12 CO-observed GRB hosts, 3 are clearly deficient in molecular gas, even taking into account their metallicity (980425, 060814, and 080517). Four others are close to the best-fit line for other star-forming galaxies on the SFR-MH2 plot (051022, 060505, 080207, and 100316D). One host is clearly molecule rich (111005A). Finally, the data for 4 GRB hosts are not deep enough to judge whether they are molecule deficient (000418, 030329, 031203, and 090423). The median value of the molecular gas depletion time, MH2/SFR, of GRB hosts is ∼0.3 dex below that of other star-forming galaxies, but this result has low statistical significance. A Kolmogorov–Smirnov test performed on MH2/SFR shows an only ∼2σ difference between GRB hosts and other galaxies. This difference can partly be explained by metallicity effects, since the significance decreases to ∼1σ for MH2/SFR versus metallicity. Conclusions. We found that any molecular gas deficiency of GRB hosts has low statistical significance and that it can be attributed to their lower metallicities; and thus the sample of GRB hosts has molecular properties that are consistent with those of other galaxies, and they can be treated as representative star-forming galaxies. However, the molecular gas deficiency can be strong for GRB hosts if they exhibit higher excitations and/or a lower CO-to-H2 conversion factor than we assume, which would lead to lower molecular gas masses than we derive. Given the concentration of atomic gas recently found close to GRB and supernova sites, indicating recent gas inflow, our results about the weak molecular deficiency imply that such an inflow does not enhance the SFRs significantly, or that atomic gas converts efficiently into the molecular phase, which fuels star formation. Only if the analysis of a larger GRB host sample reveals molecular deficiency (especially close to the GRB position) would this support the hypothesis of star formation that is directly fuelled by atomic gas.

[1]  J. Fynbo,et al.  Infrared molecular hydrogen lines in GRB host galaxies , 2018, Monthly Notices of the Royal Astronomical Society.

[2]  S. Wuyts,et al.  Cross-calibration of CO- versus dust-based gas masses and assessment of the dynamical mass budget in Herschel-SDSS Stripe82 galaxies. , 2018, 1803.08926.

[3]  B. Elmegreen On the Appearance of Thresholds in the Dynamical Model of Star Formation , 2018, 1801.04375.

[4]  P. Yagoubov,et al.  SEPIA – a new single pixel receiver at the APEX telescope (Corrigendum) , 2017, Astronomy & Astrophysics.

[5]  D. Elbaz,et al.  A molecular gas-rich GRB host galaxy at the peak of cosmic star formation , 2017, 1709.00424.

[6]  D. A. Kann,et al.  The environment of the SN-less GRB 111005A at z = 0.0133 , 2017, Astronomy & Astrophysics.

[7]  M. Michałowski,et al.  Observational evidence for constant gas accretion rate since z = 5 , 2017, 1707.08877.

[8]  A. Weiss,et al.  Physical conditions of the molecular gas in metal-poor galaxies , 2017, 1704.05252.

[9]  P. Schady,et al.  Hot gas around SN 1998bw: Inferring the progenitor from its environment , 2017, 1702.05430.

[10]  L. Galbany,et al.  Molecular gas in supernova local environments unveiled by EDGE , 2017, 1702.02945.

[11]  A. J. van der Horst,et al.  The second-closest gamma-ray burst: sub-luminous GRB 111005A with no supernova in a super-solar metallicity environment , 2016, Astronomy & Astrophysics.

[12]  J. Graham,et al.  A revised host galaxy association for GRB 020819B: a high-redshift dusty starburst, not a low-redshift gas-poor spiral , 2016, 1609.04016.

[13]  J. Hjorth,et al.  Late-time VLA reobservations rule out ULIRG-like host galaxies for most pre-Swift long-duration gamma-ray bursts , 2016, 1609.04015.

[14]  J. Hjorth,et al.  GRB 980425 host : [C II], [O I], and CO lines reveal recent enhancement of star formation due to atomic gas inflow , 2016, 1609.01742.

[15]  A. Hopkins,et al.  GAMA/H-ATLAS: common star formation rate indicators and their dependence on galaxy physical parameters , 2016, 1607.02971.

[16]  J. Graham,et al.  Probing dust-obscured star formation in the most massive Gamma-Ray Burst host galaxies , 2016, 1606.08285.

[17]  A. Hopkins,et al.  GAMA/H-ATLAS: a meta-analysis of SFR indicators – comprehensive measures of the SFR–M* relation and cosmic star formation history at z < 0.4 , 2016, 1606.06299.

[18]  N. Grogin,et al.  THE STAR FORMATION RATE EFFICIENCY OF NEUTRAL ATOMIC-DOMINATED HYDROGEN GAS IN THE OUTSKIRTS OF STAR-FORMING GALAXIES FROM z ∼ 1 TO z ∼ 3 , 2016, 1604.08597.

[19]  S. Juneau,et al.  HIGH STAR FORMATION RATES IN TURBULENT ATOMIC-DOMINATED GAS IN THE INTERACTING GALAXIES IC 2163 AND NGC 2207 , 2016, 1603.04533.

[20]  L. Bizzocchi,et al.  Star-forming dwarf galaxies in the Virgo cluster: the link between molecular gas, atomic gas, and dust , 2016, 1602.09077.

[21]  S. Glover,et al.  Star formation and molecular hydrogen in dwarf galaxies: a non-equilibrium view , 2015, 1510.05644.

[22]  K. Menten,et al.  Molecular depletion times and the CO-to-H2 conversion factor in metal-poor galaxies , 2015, 1509.04870.

[23]  M. Zwaan,et al.  First measurement of H i 21 cm emission from a GRB host galaxy indicates a post-merger system , 2015, 1508.03342.

[24]  D. Malesani,et al.  Massive stars formed in atomic hydrogen reservoirs: H I observations of gamma-ray burst host galaxies , 2015, 1508.03094.

[25]  D. A. Kann,et al.  GRB hosts through cosmic time - VLT/X-Shooter emission-line spectroscopy of 96 γ-ray-burst-selected galaxies at 0.1 , 2015, 1505.06743.

[26]  J. Fynbo,et al.  THE SWIFT GRB HOST GALAXY LEGACY SURVEY. II. REST-FRAME NEAR-IR LUMINOSITY DISTRIBUTION AND EVIDENCE FOR A NEAR-SOLAR METALLICITY THRESHOLD , 2015, 1504.02479.

[27]  R. Ellis,et al.  THE SWIFT GAMMA-RAY BURST HOST GALAXY LEGACY SURVEY. I. SAMPLE SELECTION AND REDSHIFT DISTRIBUTION , 2015, 1504.02482.

[28]  D. A. Kann,et al.  GAMMA-RAY BURSTS TRACE UV METRICS OF STAR FORMATION OVER 3 < z < 5 , 2015, 1503.05323.

[29]  J. Fynbo,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VII. THE HOST GALAXY LUMINOSITY FUNCTION: PROBING THE RELATIONSHIP BETWEEN GRBs AND STAR FORMATION TO REDSHIFT ∼6 , 2015, 1503.04246.

[30]  S. Maddox,et al.  Far-infrared observations of an unbiased sample of gamma-ray burst host galaxies , 2015, 1501.01004.

[31]  K. Wiersema,et al.  A DETECTION OF MOLECULAR GAS EMISSION IN THE HOST GALAXY OF GRB 080517 , 2014, 1411.7389.

[32]  F. Mannucci,et al.  Are long gamma-ray bursts biased tracers of star formation? Clues from the host galaxies of the Swift/BAT6 complete sample of LGRBs I. Stellar mass at z < 1 ? , 2014, 1409.7064.

[33]  K. Wiersema,et al.  GRB 080517: a local, low-luminosity gamma-ray burst in a dusty galaxy at z = 0.09 , 2014, 1409.5791.

[34]  F. Walter,et al.  ALLSMOG: An APEX low-redshift legacy survey for molecular gas - I. molecular gas scaling relations, and the effect of the CO/H2 conversion factor , 2014, 1409.4764.

[35]  P. Jakobsson,et al.  CONNECTING GRBs AND ULIRGs: A SENSITIVE, UNBIASED SURVEY FOR RADIO EMISSION FROM GAMMA-RAY BURST HOST GALAXIES AT 0 < z < 2.5 , 2014, 1407.4456.

[36]  A. Endo,et al.  Two γ-ray bursts from dusty regions with little molecular gas , 2014, Nature.

[37]  M. Sauvage,et al.  PACS photometry of the herschel reference survey - far-infrared/ submillimetre colours as tracers of dust properties in nearby galaxies , 2014, 1402.4524.

[38]  E. Palazzi,et al.  New light on gamma-ray burst host galaxies with Herschel , 2014, 1402.4006.

[39]  M. Boquien,et al.  Dust spectral energy distributions of nearby galaxies: an insight from the Herschel Reference Survey , 2014, 1402.3597.

[40]  M. Boquien,et al.  Cold gas properties of the Herschel Reference Survey - I. 12CO(1–0) and HI data , 2014, 1401.7773.

[41]  N. Abel,et al.  The molecular gas reservoir of 6 low-metallicity galaxies from the Herschel Dwarf Galaxy Survey - A ground-based follow-up survey of CO(1–0), CO(2–1), and CO(3–2) , 2014, 1401.0563.

[42]  M. Sauvage,et al.  ALMA observations of cool dust in a low-metallicity starburst, SBS0335-052 , 2013, 1312.0944.

[43]  J. Cuby,et al.  Spatially-resolved dust properties of the GRB 980425 host galaxy , 2013, 1311.6466.

[44]  S. Basa,et al.  A method for quantifying the gamma-ray burst bias. Application in the redshift range of 0–1.1 , 2013, 1307.0950.

[45]  H. Roussel,et al.  An Overview of the Dwarf Galaxy Survey , 2013, 1305.2628.

[46]  J. Fynbo,et al.  A POPULATION OF MASSIVE, LUMINOUS GALAXIES HOSTING HEAVILY DUST-OBSCURED GAMMA-RAY BURSTS: IMPLICATIONS FOR THE USE OF GRBs AS TRACERS OF COSMIC STAR FORMATION , 2013, 1301.5903.

[47]  A. Bolatto,et al.  The CO-to-H2 Conversion Factor , 2013, 1301.3498.

[48]  F. Walter,et al.  Cool Gas in High-Redshift Galaxies , 2013, 1301.0371.

[49]  D. Elbaz,et al.  Dust temperature and CO → H2 conversion factor variations in the SFR-M∗ plane , 2012, 1210.2760.

[50]  M. Krumholz STAR FORMATION IN ATOMIC GAS , 2012, 1208.1504.

[51]  S. Eales,et al.  The GALEX view of the Herschel Reference Survey - Ultraviolet structural properties of nearby galaxies , 2012, 1206.1130.

[52]  R. F. Reinfrank,et al.  THE OPTICALLY UNBIASED GRB HOST (TOUGH) SURVEY. VI. RADIO OBSERVATIONS AT z ≲ 1 AND CONSISTENCY WITH TYPICAL STAR-FORMING GALAXIES , 2012, 1205.4239.

[53]  Andrew J. Levan,et al.  THE OPTICALLY UNBIASED GAMMA-RAY BURST HOST (TOUGH) SURVEY. I. SURVEY DESIGN AND CATALOGS , 2012, 1205.3162.

[54]  A. M. Swinbank,et al.  A survey of molecular gas in luminous sub-millimetre galaxies , 2012, 1205.1511.

[55]  A. Weiss,et al.  EVIDENCE FOR LOW EXTINCTION IN ACTIVELY STAR-FORMING GALAXIES AT z > 6.5 , 2012, 1204.3426.

[56]  J. Brinchmann,et al.  GAS, STARS, AND STAR FORMATION IN ALFALFA DWARF GALAXIES , 2012, 1203.3226.

[57]  P. Schady,et al.  The long γ-ray burst rate and the correlation with host galaxy properties , 2012, 1202.1225.

[58]  B. Lazareff,et al.  The EMIR multi-band mm-wave receiver for the IRAM 30-m telescope , 2012 .

[59]  Pasadena,et al.  THE FIRST INFRARED STUDY OF THE CLOSE ENVIRONMENT OF A LONG GAMMA-RAY BURST* , 2011, 1111.1234.

[60]  P. J. Wheatley,et al.  The dark GRB080207 in an extremely red host and the implications for gamma-ray bursts in highly obscured environments , 2011, 1109.3167.

[61]  D. Elbaz,et al.  GOODS-HERSCHEL: GAS-TO-DUST MASS RATIOS AND CO-TO-H2 CONVERSION FACTORS IN NORMAL AND STARBURSTING GALAXIES AT HIGH-z , 2011, 1109.1140.

[62]  B. Robertson,et al.  CONNECTING THE GAMMA RAY BURST RATE AND THE COSMIC STAR FORMATION HISTORY: IMPLICATIONS FOR REIONIZATION AND GALAXY EVOLUTION , 2011, 1109.0990.

[63]  Sandra Savaglio,et al.  THE EXTREMELY RED HOST GALAXY OF GRB 080207 , 2011, 1106.3988.

[64]  A. Endo,et al.  CO OBSERVATIONS OF THE HOST GALAXY OF GRB 000418 AT z = 1.1 , 2011, 1106.1939.

[65]  S. Glover,et al.  Is molecular gas necessary for star formation , 2011, 1105.3073.

[66]  Ryan Chornock,et al.  METALLICITY IN THE GRB 100316D/SN 2010bh HOST COMPLEX , 2011, 1104.2865.

[67]  S. Bamford,et al.  GAMA/H-ATLAS: the ultraviolet spectral slope and obscuration in galaxies , 2011, 1103.3080.

[68]  R. Giovanelli,et al.  COLD GASS, an IRAM legacy survey of molecular gas in massive galaxies – I. Relations between H2, H i, stellar content and structural properties , 2011, 1103.1642.

[69]  Imperial College London,et al.  A NEARBY GAMMA-RAY BURST HOST PROTOTYPE FOR z ∼ 7 LYMAN-BREAK GALAXIES: SPITZER-IRS AND X-SHOOTER SPECTROSCOPY OF THE HOST GALAXY OF GRB 031203 , 2010, 1010.1783.

[70]  Andrew J. Levan,et al.  Constraining the molecular gas in the environs of a z ~ 8 gamma-ray burst host galaxy , 2010, 1008.3383.

[71]  A. Leroy,et al.  EXTREMELY INEFFICIENT STAR FORMATION IN THE OUTER DISKS OF NEARBY GALAXIES , 2010, 1007.3498.

[72]  T. Sakamoto,et al.  Discovery of the nearby long, soft GRB 100316D with an associated supernova , 2010, 1004.2919.

[73]  M. Sauvage,et al.  The Herschel Reference Survey , 2010, 1001.5136.

[74]  A. J. Levan,et al.  The host galaxies of core‐collapse supernovae and gamma‐ray bursts , 2010, 1001.5042.

[75]  D. Elbaz,et al.  VERY HIGH GAS FRACTIONS AND EXTENDED GAS RESERVOIRS IN z = 1.5 DISK GALAXIES , 2009, 0911.2776.

[76]  Evert Rol,et al.  A γ-ray burst at a redshift of z ≈ 8.2 , 2009, Nature.

[77]  Nathaniel R. Butler,et al.  THE COSMIC RATE, LUMINOSITY FUNCTION, AND INTRINSIC CORRELATIONS OF LONG GAMMA-RAY BURSTS , 2009, 0910.3341.

[78]  Benjamin D. Johnson,et al.  COMPARISON OF Hα AND UV STAR FORMATION RATES IN THE LOCAL VOLUME: SYSTEMATIC DISCREPANCIES FOR DWARF GALAXIES , 2009, 0909.5205.

[79]  L. Kewley,et al.  THE HOST GALAXIES OF GAMMA-RAY BURSTS. I. INTERSTELLAR MEDIUM PROPERTIES OF TEN NEARBY LONG-DURATION GAMMA-RAY BURST HOSTS , 2009, 0907.4988.

[80]  P. Giommi,et al.  GRB 090423 at a redshift of z ≈ 8.1 , 2009, Nature.

[81]  V. N. Komarova,et al.  A glimpse of the end of the dark ages: the gamma-ray burst of 23 April 2009 at redshift 8.3 , 2009, 0906.1577.

[82]  Andrew M. Hopkins,et al.  THE STAR FORMATION RATE IN THE REIONIZATION ERA AS INDICATED BY GAMMA-RAY BURSTS , 2009, 0906.0590.

[83]  Jens Hjorth,et al.  Cosmic evolution of submillimeter galaxies and their contribution to stellar mass assembly , 2009, 0905.4499.

[84]  G. Gavazzi,et al.  MOLECULAR HYDROGEN DEFICIENCY IN H i-POOR GALAXIES AND ITS IMPLICATIONS FOR STAR FORMATION , 2009, 0903.3950.

[85]  Michael Olberg,et al.  A Swedish heterodyne facility instrument for the APEX telescope , 2008 .

[86]  Johan P. U. Fynbo,et al.  THE PROPERTIES OF THE HOST GALAXY AND THE IMMEDIATE ENVIRONMENT OF GRB 980425/SN 1998bw FROM THE MULTIWAVELENGTH SPECTRAL ENERGY DISTRIBUTION , 2008, 0809.0508.

[87]  U. California,et al.  The relationship between gas content and star formation rate in spiral galaxies. Comparing the local field with the Virgo cluster , 2008, 0808.0093.

[88]  P. M. Vreeswijk,et al.  IFU observations of the GRB 980425/SN 1998bw host galaxy : emission line ratios in GRB regions , 2008, 0807.3554.

[89]  Jesper Sollerman,et al.  NGC 2770: A SUPERNOVA Ib FACTORY? , 2008, 0807.0473.

[90]  Andrew M. Hopkins,et al.  Revealing the High-Redshift Star Formation Rate with Gamma-Ray Bursts , 2008, 0804.4008.

[91]  J. Gorosabel,et al.  ON THE DISTRIBUTION OF STELLAR MASSES IN GAMMA-RAY BURST HOST GALAXIES , 2008, 0803.2235.

[92]  L. Kewley,et al.  Metallicity Calibrations and the Mass-Metallicity Relation for Star-forming Galaxies , 2008, 0801.1849.

[93]  M. J. Michalowski,et al.  The Nature of GRB-selected Submillimeter Galaxies: Hot and Young , 2007, 0708.3850.

[94]  S. B. Pandey,et al.  The dark nature of GRB 051022 and its host galaxy , 2007, 0708.3043.

[95]  Benjamin D. Johnson,et al.  UV Star Formation Rates in the Local Universe , 2007, 0704.3611.

[96]  A. Bolatto,et al.  The Low CO Content of the Extremely Metal-poor Galaxy I Zw 18 , 2007, 0704.0862.

[97]  D. A. Kann,et al.  Spatially Resolved Properties of the GRB 060505 Host: Implications for the Nature of the Progenitor , 2007, astro-ph/0703407.

[98]  Takeshi Sakai,et al.  A Search for CO (J = 3–2) Emission from the Host Galaxy of GRB 980425 with the Atacama Submillimeter Telescope Experiment , 2007, 0704.3654.

[99]  Baltasar Vila-Vilaro,et al.  A Revised Estimate of the CO J = 1-0 Emission from the Host Galaxy of GRB 030329 Using the Nobeyama Millimeter Array , 2007, astro-ph/0702191.

[100]  J. Gorosabel,et al.  Star Formation Rates and Stellar Masses in z ~ 1 Gamma-Ray Burst Hosts , 2006, astro-ph/0612355.

[101]  Catherine J. Cesarsky,et al.  The Atacama Pathfinder EXperiment (APEX) : a new submillimeter facility for southern skies , 2006 .

[102]  Michael Olberg,et al.  Heterodyne single-pixel facility instrumentation for the APEX Telescope , 2006, SPIE Astronomical Telescopes + Instrumentation.

[103]  E. Floc’h,et al.  Detection of Wolf-Rayet stars in host galaxies of gamma-ray bursts (GRBs) : are GRBs produced by runaway massive stars ejected from high stellar density regions? , 2006, astro-ph/0604461.

[104]  Nozomu Tominaga,et al.  Models for the Type Ic Hypernova SN 2003lw associated with GRB 031203 , 2006, astro-ph/0603516.

[105]  S. Foley The Host Galaxies of Gamma Ray Bursts , 2005 .

[106]  K. Pedersen,et al.  On the nature of nearby GRB/SN host galaxies ⋆ , 2005, astro-ph/0506686.

[107]  K. Kohno,et al.  Nobeyama Millimeter Array Observations of GRB 030329 : a Decay of Afterglow with Bumps and Molecular Gas in the Host Galaxy , 2004, astro-ph/0412261.

[108]  Kevin C. Hurley,et al.  The Host Galaxy of GRB 031203: Implications of Its Low Metallicity, Low Redshift, and Starburst Nature , 2004, astro-ph/0402085.

[109]  M. Pettini,et al.  [O III] / [N II] as an abundance indicator at high redshift , 2004, astro-ph/0401128.

[110]  K. Pedersen,et al.  A very energetic supernova associated with the γ-ray burst of 29 March 2003 , 2003, Nature.

[111]  Warren R. Brown,et al.  Spectroscopic Discovery of the Supernova 2003dh Associated with GRB 030329 , 2003, astro-ph/0304173.

[112]  Gilles Chabrier,et al.  The Galactic Disk Mass Function: Reconciliation of the Hubble Space Telescope and Nearby Determinations , 2003, astro-ph/0302511.

[113]  S. R. Kulkarni,et al.  The Redshift Determination of GRB 990506 and GRB 000418 with the Echellete Spectrograph Imager on Keck , 2002, astro-ph/0212123.

[114]  Harvard-Smithsonian CfA,et al.  Using Strong Lines to Estimate Abundances in Extragalactic H II Regions and Starburst Galaxies , 2002, astro-ph/0206495.

[115]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[116]  Simon J. E. Radford,et al.  The Molecular Interstellar Medium in Ultraluminous Infrared Galaxies , 1996, astro-ph/9610166.

[117]  B. Soifer,et al.  Molecular gas in luminous infrared galaxies , 1991 .

[118]  N. Devereux,et al.  THE GAS DUST RATIO IN SPIRAL GALAXIES , 1990 .

[119]  J. Kenney,et al.  Global properties of infrared bright galaxies , 1989 .

[120]  L.Armus,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 PROBING THE COSMIC STAR FORMATION USING LONG GAMMA-RAY BURSTS: NEW CONSTRAINTS FROM THE SPITZER SPACE TELESCOPE ∗ , 2006 .

[121]  L. Kewley,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 HIGH-RESOLUTION MEASUREMENTS OF THE HALOS OF FOUR DARK MATTER-DOMINATED GALAXIES: DEVIATIONS FROM A UNIVERSAL DENSITY PROFILE 1 , 2004 .

[122]  E. Salpeter The Luminosity function and stellar evolution , 1955 .

[123]  A. Leroy,et al.  Accepted for publication in The Astronomical Journal Preprint typeset using L ATEX style emulateapj v. 08/13/06 THE STAR FORMATION EFFICIENCY IN NEARBY GALAXIES: MEASURING WHERE GAS FORMS STARS EFFECTIVELY , 2022 .

[124]  K. G LAZEBROOK,et al.  APJ IN PRESS Preprint typeset using L ATEX style emulateapj v. 03/07/07 THE GALAXY POPULATION HOSTING GAMMA-RAY BURSTS , 2022 .

[125]  T. Dwelly,et al.  Herschel (cid:63) observations of gamma-ray burst host galaxies: implications for the topology of the dusty interstellar medium , 2022 .