All-Pairs Shortest Paths in O(n²) Time with High Probability
暂无分享,去创建一个
Yuval Peres | Uri Zwick | Benny Sudakov | Dmitry Sotnikov | Y. Peres | U. Zwick | B. Sudakov | D. Sotnikov | Uri Zwick
[1] Refael Hassin,et al. On Shortest Paths in Graphs with Random Weights , 1985, Math. Oper. Res..
[2] Svante Janson,et al. One, Two and Three Times log n/n for Paths in a Complete Graph with Random Weights , 1999, Combinatorics, Probability and Computing.
[3] Dan Suciu,et al. Journal of the ACM , 2006 .
[4] Torben Hagerup. Simpler Computation of Single-Source Shortest Paths in Linear Average Time , 2005, Theory of Computing Systems.
[5] Mikkel Thorup,et al. Does Path Cleaning Help in Dynamic All-Pairs Shortest Paths? , 2006, ESA.
[6] Catherine C. McGeoch. All-pairs shortest paths and the essential subgraph , 2005, Algorithmica.
[7] Giuseppe F. Italiano,et al. Experimental analysis of dynamic all pairs shortest path algorithms , 2004, SODA '04.
[8] Luc Devroye,et al. Branching processes in the analysis of the heights of trees , 1987, Acta Informatica.
[9] Edsger W. Dijkstra,et al. A note on two problems in connexion with graphs , 1959, Numerische Mathematik.
[10] Alan M. Frieze,et al. Average-case complexity of shortest-paths problems in the vertex-potential model , 1997, Random Struct. Algorithms.
[11] Alan M. Frieze,et al. The shortest-path problem for graphs with random arc-lengths , 1985, Discret. Appl. Math..
[12] Giuseppe F. Italiano,et al. A new approach to dynamic all pairs shortest paths , 2004, JACM.
[13] Mikkel Thorup,et al. Worst-case update times for fully-dynamic all-pairs shortest paths , 2005, STOC '05.
[14] Alistair Moffat,et al. An All Pairs Shortest Path Algorithm with Expected Time O(n² log n) , 1987, SIAM J. Comput..
[15] Mikkel Thorup,et al. Fully-Dynamic All-Pairs Shortest Paths: Faster and Allowing Negative Cycles , 2004, SWAT.
[16] Alan M. Frieze,et al. Average-Case Complexity of Shortest-Paths Problems in the Vertex-Potential Model , 1997, RANDOM.
[17] David R. Karger,et al. Finding the Hidden Path: Time Bounds for All-Pairs Shortest Paths , 1993, SIAM J. Comput..
[18] Harald Niederreiter,et al. Probability and computing: randomized algorithms and probabilistic analysis , 2006, Math. Comput..
[19] Mikkel Thorup,et al. Undirected single-source shortest paths with positive integer weights in linear time , 1999, JACM.
[20] Seth Pettie,et al. A new approach to all-pairs shortest paths on real-weighted graphs , 2004, Theor. Comput. Sci..
[21] J. Moon,et al. Combinatorics: The distance between nodes in recursive trees , 1974 .
[22] Gábor Lugosi,et al. Concentration Inequalities , 2008, COLT.
[23] Philip M. Spira,et al. A New Algorithm for Finding all Shortest Paths in a Graph of Positive Arcs in Average Time 0(n2 log2n) , 1973, SIAM J. Comput..
[24] Alan M. Frieze,et al. Algorithmic theory of random graphs , 1997, Random Struct. Algorithms.
[25] Tobias Friedrich,et al. Average Update Times for Fully-Dynamic All-Pairs Shortest Paths , 2008, ISAAC.
[26] Robert Davis,et al. The Expected Length of a Shortest Path , 1993, Inf. Process. Lett..
[27] Ulrich Meyer,et al. Average-case complexity of single-source shortest-paths algorithms: lower and upper bounds , 2003, J. Algorithms.
[28] Gábor Lugosi,et al. The Longest Minimum-Weight Path in a Complete Graph , 2010, Comb. Probab. Comput..
[29] Robert B. Dial,et al. Algorithm 360: shortest-path forest with topological ordering [H] , 1969, CACM.
[30] Andreas Maurer. A bound on the deviation probability for sums of non-negative random variables. , 2003 .
[31] Robert E. Tarjan,et al. Fibonacci heaps and their uses in improved network optimization algorithms , 1984, JACM.
[32] Kurt Mehlhorn,et al. On the All-Pairs Shortest Path Algorithm of Moffat and Takaoka , 1995, ESA.
[33] Peter A. Bloniarz. A Shortest-Path Algorithm with Expected Time O(n2 log n log* n) , 1983, SIAM J. Comput..
[34] Andrew V. Goldberg. A Practical Shortest Path Algorithm with Linear Expected Time , 2008, SIAM J. Comput..