On error exponents in quantum hypothesis testing

In the simple quantum hypothesis testing problem for two density operators, upper bounds on the error probabilities are shown based on a key operator inequality between a density operator and a conditional expectation of it. Concerning the error exponents, the upper bounds lead to a noncommutative analog of the Hoeffding bound, which is identical with the classical counterpart if two density operators commute. The upper bounds also provide a simple proof of the direct part of the quantum Stein's lemma.

[1]  M. Hayashi Optimal sequence of quantum measurements in the sense of Stein's lemma in quantum hypothesis testing , 2002, quant-ph/0208020.

[2]  Richard E. Blahut,et al.  Principles and practice of information theory , 1987 .

[3]  Sergio Verdú,et al.  A general formula for channel capacity , 1994, IEEE Trans. Inf. Theory.

[4]  Wassily Hoeffding,et al.  On probabilities of large deviations , 1994 .

[5]  Masahito Hayashi,et al.  General formulas for capacity of classical-quantum channels , 2003, IEEE Transactions on Information Theory.

[6]  Richard E. Blahut,et al.  Hypothesis testing and information theory , 1974, IEEE Trans. Inf. Theory.

[7]  C. Helstrom Quantum detection and estimation theory , 1969 .

[8]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[9]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[10]  D. Petz Quasi-entropies for States of a von Neumann Algebra , 1985 .

[11]  D. Petz,et al.  Quantum Entropy and Its Use , 1993 .

[12]  M. Hayashi Exponents of quantum fixed-length pure-state source coding , 2002, quant-ph/0202002.

[13]  Hiroki Koga,et al.  Information-Spectrum Methods in Information Theory , 2002 .

[14]  D. Petz Quasi-entropies for finite quantum systems , 1986 .

[15]  M. Hayashi Optimal sequence of POVMs in the sense of Stein's lemma in quantum hypothesis testing , 2001, quant-ph/0107004.

[16]  林 正人 Quantum information : an introduction , 2006 .

[17]  Shun-ichi Amari,et al.  Methods of information geometry , 2000 .

[18]  Hiroshi Nagaoka,et al.  General formulas for capacity of classical-quantum channels , 2002, IEEE Transactions on Information Theory.

[19]  Te Sun Han,et al.  The strong converse theorem for hypothesis testing , 1989, IEEE Trans. Inf. Theory.

[20]  H. Chernoff A Measure of Asymptotic Efficiency for Tests of a Hypothesis Based on the sum of Observations , 1952 .

[21]  H. Nagaoka,et al.  Strong converse theorems in the quantum information theory , 1999, 1999 Information Theory and Networking Workshop (Cat. No.99EX371).

[22]  F. Hiai,et al.  The proper formula for relative entropy and its asymptotics in quantum probability , 1991 .

[23]  M. Hayashi,et al.  On error exponents in quantum hypothesis testing , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[24]  Tomohiro Ogawa,et al.  Strong converse and Stein's lemma in quantum hypothesis testing , 2000, IEEE Trans. Inf. Theory.

[25]  H. Nagaoka,et al.  A new proof of the channel coding theorem via hypothesis testing in quantum information theory , 2002, Proceedings IEEE International Symposium on Information Theory,.