Realized Variance and Market Microstructure Noise

We study market microstructure noise in high-frequency data and analyze its implications for the realized variance (RV) under a general specification for the noise. We show that kernel-based estimators can unearth important characteristics of market microstructure noise and that a simple kernel-based estimator dominates the RV for the estimation of integrated variance (IV). An empirical analysis of the Dow Jones Industrial Average stocks reveals that market microstructure noise is time-dependent and correlated with increments in the efficient price. This has important implications for volatility estimation based on high-frequency data. Finally, we apply cointegration techniques to decompose transaction prices and bid–ask quotes into an estimate of the efficient price and noise. This framework enables us to study the dynamic effects on transaction prices and quotes caused by changes in the efficient price.

[1]  J. Proudfoot,et al.  Noise , 1931, The Indian medical gazette.

[2]  P. Billingsley,et al.  Probability and Measure , 1980 .

[3]  R. C. Merton,et al.  On Estimating the Expected Return on the Market: An Exploratory Investigation , 1980 .

[4]  R. Roll,et al.  A Simple Implicit Measure of the Effective Bid-Ask Spread in an Efficient Market , 2008 .

[5]  J. Friedman A VARIABLE SPAN SMOOTHER , 1984 .

[6]  Paul R. Milgrom,et al.  Bid, ask and transaction prices in a specialist market with heterogeneously informed traders , 1985 .

[7]  W. Wasserfallen,et al.  The behavior of intra-daily exchange rates , 1985 .

[8]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[9]  W. Newey,et al.  A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelationconsistent Covariance Matrix , 1986 .

[10]  Michael L. Stein,et al.  Minimum norm quadratic estimation of spatial variograms , 1987 .

[11]  Maureen O'Hara,et al.  PRICE, TRADE SIZE, AND INFORMATION IN SECURITIES MARKETS* , 1987 .

[12]  Y. Amihud,et al.  Trading Mechanisms and Stock Returns: An Empirical Investigation , 1987 .

[13]  K. French,et al.  Expected stock returns and volatility , 1987 .

[14]  S. Johansen STATISTICAL ANALYSIS OF COINTEGRATION VECTORS , 1988 .

[15]  W. Cleveland,et al.  Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting , 1988 .

[16]  L. Harris Estimation of Stock Price Variances and Serial Covariances from Discrete Observations , 1990 .

[17]  M. Dacorogna,et al.  Statistical study of foreign exchange rates, empirical evidence of a price change scaling law, and intraday analysis , 1990 .

[18]  P. Protter Stochastic integration and differential equations , 1990 .

[19]  L. Harris Stock Price Clustering and Discreteness , 1991 .

[20]  D. Andrews Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation , 1991 .

[21]  Maureen O'Hara,et al.  Time and the Process of Security Price Adjustment , 1992 .

[22]  Jesus Gonzalo,et al.  Estimation of Common Long-Memory Components in Cointegrated Systems , 1995 .

[23]  Maureen O'Hara,et al.  Market Microstructure Theory , 1995 .

[24]  K. West Another Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimator , 1995 .

[25]  Thomas H. Mcinish,et al.  Cointegration, Error Correction, and Price Discovery on Informationally Linked Security Markets , 1995, Journal of Financial and Quantitative Analysis.

[26]  Joel Hasbrouck,et al.  One Security, Many Markets: Determining the Contributions to Price Discovery , 1995 .

[27]  Yue Fang,et al.  Volatility modeling and estimation of high-frequency data with Gaussian noise , 1996 .

[28]  T. Bollerslev,et al.  Intraday periodicity and volatility persistence in financial markets , 1997 .

[29]  Ulrich A. Müller STATISTICS OF VARIABLES OBSERVED OVER OVERLAPPING INTERVALS , 1997 .

[30]  C. Dunis,et al.  Nonlinear modelling of high frequency financial time series , 1998 .

[31]  T. Bollerslev,et al.  ANSWERING THE SKEPTICS: YES, STANDARD VOLATILITY MODELS DO PROVIDE ACCURATE FORECASTS* , 1998 .

[32]  Søren Johansen,et al.  Workbook on cointegration , 1998 .

[33]  P. Protter,et al.  Asymptotic error distributions for the Euler method for stochastic differential equations , 1998 .

[34]  Heiko Ebens Realized Stock Volatility , 1999 .

[35]  G. Mason,et al.  Beyond Merton’s Utopia: Effects of Non-normality and Dependence on the Precision of Variance Estimates Using High-frequency Financial Data , 2000 .

[36]  N. Shephard,et al.  Econometric analysis of realised volatility and its use in estimating stochastic volatility models , 2000 .

[37]  Nicholas M. Kiefer,et al.  Simple Robust Testing of Regression Hypotheses , 2000 .

[38]  P. Hansen Granger's Representation Theorem: A Closed-Form Expression for /(1) Processes , 2005 .

[39]  Joel Hasbrouck Stalking the "Efficient Price" in Market Microstructure Specifications: An Overview , 2000 .

[40]  R. Gencay,et al.  An Introduc-tion to High-Frequency Finance , 2001 .

[41]  Francis X. Diebold,et al.  Modeling and Forecasting Realized Volatility , 2001 .

[42]  Lan Zhang,et al.  From martingales to ANOVA : implied and realized volatility , 2001 .

[43]  F. Diebold,et al.  The distribution of realized stock return volatility , 2001 .

[44]  N. Shephard,et al.  Realised power variation and stochastic volatility models , 2003 .

[45]  M. Dacorogna,et al.  Consistent High-Precision Volatility from High-Frequency Data , 2001 .

[46]  P. Hansen,et al.  A Forecast Comparison of Volatility Models: Does Anything Beat a Garch(1,1)? , 2004 .

[47]  N. Meddahi,et al.  A theoretical comparison between integrated and realized volatility , 2002 .

[48]  Thomas H. McCurdy,et al.  Nonlinear Features of Realized FX Volatility , 2001 .

[49]  Eric Ghysels,et al.  Rolling-Sample Volatility Estimators , 2002 .

[50]  B. Bollen,et al.  Estimating Daily Volatility in Financial Markets Utilizing Intraday Data , 2002 .

[51]  Bruce N. Lehmann,et al.  Some desiderata for the measurement of price discovery across markets , 2002 .

[52]  N. Shephard,et al.  Econometric analysis of realized volatility and its use in estimating stochastic volatility models , 2002 .

[53]  Roel C. A. Oomen,et al.  Statistical Models for High Frequency Security Prices , 2002 .

[54]  Frank de Jong,et al.  Measures of Contributions to Price Discovery: A Comparison , 2002 .

[55]  Measuring and forecasting financial variability using realised variance with and without a model , 2002 .

[56]  Thomas H. Mcinish,et al.  Security price adjustment across exchanges: an investigation of common factor components for Dow stocks , 2002 .

[57]  T. Bollerslev,et al.  Analytical Evaluation of Volatility Forecasts , 2002 .

[58]  R. Baillie,et al.  Price discovery and common factor models , 2002 .

[59]  Asger Lunde,et al.  Choosing the Best Volatility Models: The Model Confidence Set Approach , 2003 .

[60]  N. Shephard,et al.  Econometrics of Testing for Jumps in Financial Economics Using Bipower Variation , 2005 .

[61]  P. Hansen,et al.  An Optimal and Unbiased Measure of Realized Variance Based on Intermittent High-Frequency Data , 2003 .

[62]  E. Ghysels,et al.  Série Scientifique Scientific Series Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies , 2022 .

[63]  Yacine Ait-Sahalia,et al.  How Often to Sample a Continuous-Time Process in the Presence of Market Microstructure Noise , 2003 .

[64]  Tim Bollerslev,et al.  Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility , 2003 .

[65]  N. Shephard Realized power variation and stochastic volatility models , 2003 .

[66]  N. Shephard,et al.  Power and bipower variation with stochastic volatility and jumps , 2003 .

[67]  Fulvio Corsi,et al.  A Discrete Sine Transform Approach for Realized Volatility Measurement , 2003 .

[68]  Lan Zhang,et al.  A Tale of Two Time Scales , 2003 .

[69]  N. Shephard,et al.  Impact of jumps on returns and realised variances: econometric analysis of time-deformed Lévy processes , 2006 .

[70]  P. Hansen,et al.  Consistent Ranking of Volatility Models , 2006 .

[71]  Thorsten Lehnert,et al.  Realized Variance in the Presence of Non-Iid Microstructure Noise , 2004 .

[72]  Michael Jansson The Error in Rejection Probability of Simple Autocorrelation Robust Tests , 2004 .

[73]  Walter Distaso,et al.  Testing and Modelling Market Microstructure Effects with an Application to the Dow Jones Industrial Average , 2004 .

[74]  Neil Shephard,et al.  Regular and Modified Kernel-Based Estimators of Integrated Variance: The Case with Independent Noise , 2004 .

[75]  R. Oomen Modelling Realized Variance when Returns are Serially Correlated , 2004 .

[76]  P. Hansen,et al.  An Unbiased Measure of Realized Variance , 2004 .

[77]  Roel C. A. Oomen,et al.  Properties of realized variance for a pure jump process: calendar time sampling versus business time sampling , 2004 .

[78]  R. Oomen Properties of Bias-Corrected Realized Variance Under Alternative Sampling Schemes , 2005 .

[79]  R. Oomen Properties of Bias Corrected Realized Variance in Calendar Time and Business Time , 2004 .

[80]  Lan Zhang Efficient Estimation of Stochastic Volatility Using Noisy Observations: A Multi-Scale Approach , 2004, math/0411397.

[81]  Jeffrey R. Russell,et al.  Microstructure noise, realized volatility, and optimal sampling , 2004 .

[82]  P. Phillips,et al.  A Simple Approach to the Parametric Estimation of Potentially Nonstationary Diffusions , 2005 .

[83]  P. Hansen,et al.  A Realized Variance for the Whole Day Based on Intermittent High-Frequency Data , 2005 .

[84]  N. Shephard,et al.  Variation, Jumps, Market Frictions and High Frequency Data in Financial Econometrics , 2005 .

[85]  Siem Jan Koopman,et al.  Forecasting Daily Variability of the S&P 100 Stock Index Using Historical, Realised and Implied Volatility Measurements , 2005 .

[86]  Andrew J. Patton,et al.  Volatility Forecast Evaluation and Comparison Using Imperfect Volatility Proxies , 2005 .

[87]  George Tauchen,et al.  Cross-Stock Comparisons of the Relative Contribution of Jumps to Total Price Variance , 2012 .

[88]  Kim Christensen,et al.  Asymptotic theory for range-based estimation of integrated variance of a continuous semi-martingale , 2005 .

[89]  Jeremy H. Large Estimating quadratic variation when quoted prices jump by a constant increment , 2005 .

[90]  R. Engle,et al.  Forecasting Volatility Using Tick by Tick Data , 2005 .

[91]  George Tauchen,et al.  Identifying Realized Jumps on Financial Markets , 2005 .

[92]  P. Mykland,et al.  ANOVA for diffusions and Itô processes , 2006, math/0611274.

[93]  R. Oomen Properties of Realized Variance Under Alternative Sampling Schemes , 2006 .

[94]  F. Vega-Redondo Complex Social Networks: Econometric Society Monographs , 2007 .

[95]  Jeremy H. Large Estimating Quadratic Variation When Quoted Prices Change by a Constant Increment , 2007 .