Bacterial microsystems and microrobots

Microorganisms and specifically motile bacteria have been recently added to the list of micro-actuators typically considered for the implementation of microsystems and microrobots. Such trend has been motivated by the fact these microorganisms are self-powered actuators with overall sizes at the lower end of the micrometer range and which have proven to be extremely effective in low Reynolds number hydrodynamic regime of usually less than 10−2. Furthermore, the various sensors or taxes in bacteria influencing their movements can also be exploited to perform tasks that were previously considered only for futuristic artificial microrobots. Bacterial implementations and related issues are not only reviewed, but this paper also proposes many techniques and approaches that can be considered as building blocks for the implementations of more sophisticated microsystems and microrobots.

[1]  Howard C. Berg,et al.  Rapid rotation of flagellar bundles in swimming bacteria , 1987, Nature.

[2]  Chuck Yeung,et al.  Swimming efficiency of bacterium Escherichia coli , 2006, Proceedings of the National Academy of Sciences.

[3]  Malte Hermansson,et al.  The DLVO theory in microbial adhesion , 1999 .

[4]  William S. Ryu,et al.  Torque-generating units of the flagellar motor of Escherichia coli have a high duty ratio , 2000, Nature.

[5]  Jake J. Abbott,et al.  Robotics in the Small, Part I: Microbotics , 2007, IEEE Robotics & Automation Magazine.

[6]  D. Fletcher,et al.  Spiroplasma Swim by a Processive Change in Body Helicity , 2005, Cell.

[7]  J. Sherris,et al.  The chemotactic effect of oxygen on bacteria. , 1959, The Journal of pathology and bacteriology.

[8]  Johannes Lyklema,et al.  Hydrophobic and electrostatic parameters in bacterial adhesion , 1990, Aquatic Sciences.

[9]  B. Logan,et al.  Influence of different chemical treatments on transport of Alcaligenes paradoxus in porous media , 1995, Applied and environmental microbiology.

[10]  Petros Koumoutsakos,et al.  Optimization based on bacterial chemotaxis , 2002, IEEE Trans. Evol. Comput..

[11]  J. Shioi,et al.  Signal transduction in chemotaxis to oxygen in Escherichia coli and Salmonella typhimurium , 1988, Journal of bacteriology.

[12]  B. Behkam,et al.  Bacterial flagella-based propulsion and on/off motion control of microscale objects , 2007 .

[13]  Min Jun Kim,et al.  Controlled mixing in microfluidic systems using bacterial chemotaxis. , 2007, Analytical chemistry.

[14]  M. Viñas,et al.  Serratia marcescens adherence: the effect of O-antigen presence. , 1995, Microbios.

[15]  P. Fisher,et al.  Genetics of phototaxis in a model eukaryote, Dictyostelium discoideum , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[16]  M. Sleigh,et al.  Mechanisms of flagellar propulsion , 1991, Protoplasma.

[17]  Dirk Schüler,et al.  Genetics and cell biology of magnetosome formation in magnetotactic bacteria. , 2008, FEMS microbiology reviews.

[18]  Douglas A. Lauffenburger,et al.  Transport models for chemotactic cell populations based on individual cell behavior , 1989 .

[19]  Allan Trevor Willis,et al.  Anaerobic Bacteriology in Clinical Medicine , 1964 .

[20]  J. Higdon,et al.  A hydrodynamic analysis of flagellar propulsion , 1979, Journal of Fluid Mechanics.

[21]  Hugh C. Crenshaw,et al.  Orientation by helical motion—III. Microorganisms can orient to stimuli by changing the direction of their rotational velocity , 1993 .

[22]  Dai Fukumura,et al.  Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. , 2003, Cancer research.

[23]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[24]  J. Adler Chemotaxis in Bacteria , 1966, Science.

[25]  G. Hancock The self-propulsion of microscopic organisms through liquids , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  R. Eckert,et al.  Ciliary frequency and orientational responses to clamped voltage steps inParamecium , 1975, Journal of comparative physiology.

[27]  A M Roberts,et al.  Motion of Paramecium in static electric and magnetic fields. , 1970, Journal of theoretical biology.

[28]  Piotr Garstecki,et al.  Escherichia coli swim on the right-hand side , 2005, Nature.

[29]  S. Taniguchi,et al.  Selective localization and growth of Bifidobacterium bifidum in mouse tumors following intravenous administration. , 1980, Cancer research.

[30]  Alfred M. Spormann,et al.  Chemotactic, magnetotactic and tactile behaviour in a magnetic spirillum , 1984 .

[31]  J. S. Parkinson,et al.  A model of excitation and adaptation in bacterial chemotaxis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[32]  Kazuhiko Kinosita,et al.  F1-ATPase Is a Highly Efficient Molecular Motor that Rotates with Discrete 120° Steps , 1998, Cell.

[33]  Sylvain Martel,et al.  Flagellated Magnetotactic Bacteria as Controlled MRI-trackable Propulsion and Steering Systems for Medical Nanorobots Operating in the Human Microvasculature , 2009, Int. J. Robotics Res..

[34]  W. Coley,et al.  Contribution To The Knowledge Of Sarcoma , 1891 .

[35]  R. M. Ford,et al.  CELLULAR DYNAMICS SIMULATIONS OF BACTERIAL CHEMOTAXIS , 1993 .

[36]  R. Nossal Stochastic aspects of biological locomotion , 1983 .

[37]  H. Berg,et al.  Three-dimensional tracking of motile bacteria near a solid planar surface. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[38]  David W. M. Marr,et al.  Directed bacterial surface attachment via optical trapping , 2003 .

[39]  Yukio Magariyama,et al.  A mathematical explanation of an increase in bacterial swimming speed with viscosity in linear-polymer solutions. , 2002, Biophysical journal.

[40]  R. E. Johnson,et al.  Flagellar hydrodynamics. A comparison between resistive-force theory and slender-body theory. , 1979, Biophysical Journal.

[41]  I. Aranson,et al.  Swimming bacteria power microscopic gears , 2009, Proceedings of the National Academy of Sciences.

[42]  P. V. Zijl,et al.  Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment , 1997, Gene Therapy.

[43]  Derek R Lovley,et al.  Microbial nanowires: a new paradigm for biological electron transfer and bioelectronics. , 2012, ChemSusChem.

[44]  J. Feijen,et al.  Bacterial migration along solid surfaces , 1992, Applied and environmental microbiology.

[45]  R. Netz,et al.  Model for self-propulsive helical filaments: kink-pair propagation. , 2007, Physical review letters.

[46]  N. Phan-Thien,et al.  The role of hydrodynamic interaction in the locomotion of microorganisms. , 1993, Biophysical journal.

[47]  Roseanne M. Ford,et al.  Reversal of Flagellar Rotation Is Important in Initial Attachment of Escherichia coli to Glass in a Dynamic System with High- and Low-Ionic-Strength Buffers , 2002, Applied and Environmental Microbiology.

[48]  Berg Hc,et al.  The helical filaments of the thin flagella that propel bacteria do not wave or beat but instead rotate rigidly like propellers! And they are driven by a reversible rotary motor at their base. , 1975 .

[49]  S. I. Rubinow,et al.  Swimming of flagellated microorganisms. , 1976, Biophysical journal.

[50]  H. Berg,et al.  Reconstitution of signaling in bacterial chemotaxis , 1987, Journal of bacteriology.

[51]  Paul Rouxhet,et al.  STRUCTURAL AND PHYSICOCHEMICAL SURFACE-PROPERTIES OF SERRATIA-MARCESCENS STRAINS , 1992 .

[52]  H. B. Maitland,et al.  The influence of temperature on the motility of Pasteurella pseudotuberculosis. , 1952, Journal of general microbiology.

[53]  Paul D. Frymier,et al.  Analysis of bacterial swimming speed approaching a solid–liquid interface , 1997 .

[54]  C. V. Oss,et al.  Energetics of cell-cell and cell-biopolymer interactions , 1989, Cell Biophysics.

[55]  H. Berg,et al.  Movement of microorganisms in viscous environments , 1979, Nature.

[56]  George J. Pappas,et al.  Electrokinetic and optical control of bacterial microrobots , 2011 .

[57]  J C SHERRIS,et al.  The influence of oxygen and arginine on the motility of a strain of Pseudomonas sp. , 1957, Journal of general microbiology.

[58]  Yuhai Tu,et al.  Perfect and near-perfect adaptation in a model of bacterial chemotaxis. , 2002, Biophysical journal.

[59]  Y Imae,et al.  Effect of temperature on motility and chemotaxis of Escherichia coli , 1976, Journal of bacteriology.

[60]  I. Zhulin,et al.  Aerotaxis and other energy-sensing behavior in bacteria. , 1999, Annual review of microbiology.

[61]  Marcus L. Roper,et al.  Microscopic artificial swimmers , 2005, Nature.

[62]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[63]  Ken Ichi Arai,et al.  Spiral-type micro-machine for medical applications , 2000 .

[64]  J. Adler,et al.  The effect of environmental conditions on the motility of Escherichia coli. , 1967, Journal of general microbiology.

[65]  G. Whitesides,et al.  Propulsion of flexible polymer structures in a rotating magnetic field , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[66]  Wei Jiang,et al.  Phototaxis in the magnetotactic bacterium Magnetospirillum magneticum strain AMB-1 is independent of magnetic fields , 2010, Applied Microbiology and Biotechnology.

[67]  A. M. Purdon,et al.  Controlled Assembly of Magnetic Nanoparticles from Magnetotactic Bacteria Using Microelectromagnets Arrays , 2004 .

[68]  Tom L Richard,et al.  Engineering motility as a phenotypic response to LuxI/R-dependent quorum sensing in Escherichia coli. , 2008, Biotechnology and bioengineering.

[69]  E. Greenberg,et al.  Chemotaxis in Spirochaeta aurantia , 1977, Journal of bacteriology.

[70]  Michelle Cronin,et al.  Bacteria as vectors for gene therapy of cancer , 2010, Bioengineered bugs.

[71]  H. Berg Random Walks in Biology , 2018 .

[72]  J. Armitage,et al.  Bacterial chemotaxis: Rhodobacter sphaeroides and Sinorhizobium meliloti--variations on a theme? , 1997, Microbiology.

[73]  Anthony P. Davis,et al.  Nanotechnology: Synthetic molecular motors , 1999, Nature.

[74]  H. Berg How Bacteria Swim , 1975 .

[75]  Metin Sitti,et al.  Modeling of stochastic motion of bacteria propelled spherical microbeads , 2011 .

[76]  Li Zhang,et al.  Artificial bacterial flagella for micromanipulation. , 2010, Lab on a chip.

[77]  J. Adler,et al.  Change in intracellular pH of Escherichia coli mediates the chemotactic response to certain attractants and repellents , 1981, Journal of bacteriology.

[78]  T. Pedley,et al.  Modelling run-and-tumble chemotaxis in a shear flow , 2000, Bulletin of mathematical biology.

[79]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.

[80]  D E Koshland,et al.  Intrinsic and extrinsic light responses of Salmonella typhimurium and Escherichia coli , 1975, Journal of Bacteriology.

[81]  S. Martel,et al.  Controlled Bacterial Micro-actuation , 2006, 2006 International Conference on Microtechnologies in Medicine and Biology.

[82]  G. Whitesides,et al.  Microoxen: microorganisms to move microscale loads. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[83]  K. Arai,et al.  Micro swimming mechanisms propelled by external magnetic fields , 1996 .

[84]  Paolo Dario,et al.  Microactuators for microrobots: a critical survey , 1992 .

[85]  J. D. E. Koshland Bacterial chemotaxis as a model behavioral system , 1980 .

[86]  R. Di Leonardo,et al.  Self-starting micromotors in a bacterial bath. , 2008, Physical review letters.

[87]  Edward J. Bouwer,et al.  Reversibility and mechanism of bacterial adhesion , 1995 .

[88]  K. Kinzler,et al.  Combination bacteriolytic therapy for the treatment of experimental tumors , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[89]  H Winet,et al.  Spirillum swimming: theory and observations of propulsion by the flagellar bundle. , 1976, The Journal of experimental biology.

[90]  Rolf Bos,et al.  A reference guide to microbial cell surface hydrophobicity based on contact angles , 1998 .

[91]  R. Frankel,et al.  Magnetosome formation in prokaryotes , 2004, Nature Reviews Microbiology.

[92]  N. N. Sharma,et al.  Engineering Nanorobots: Chronology of Modeling Flagellar Propulsion , 2010 .

[93]  R Di Leonardo,et al.  Bacterial ratchet motors , 2009, Proceedings of the National Academy of Sciences.

[94]  J. G. Shoesmith,et al.  The Measurement of Bacterial Motility , 1960 .

[95]  N. Phan-Thien,et al.  Geometric optimisation of a micromachine with a spiral tail immersed in viscous medium , 1997 .

[96]  B. Logan Exoelectrogenic bacteria that power microbial fuel cells , 2009, Nature Reviews Microbiology.

[97]  I. Zhulin,et al.  Role of methylation in aerotaxis in Bacillus subtilis , 1995, Journal of bacteriology.

[98]  R. Eckert,et al.  Bioelectric control of ciliary activity. , 1972, Science.

[99]  E. Greenberg,et al.  Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators , 1994, Journal of bacteriology.

[100]  M. Levine,et al.  Computer Assisted Analyses of Cell Locomotion and Chemotaxis , 1986 .

[101]  I. Zhulin,et al.  In search of higher energy: metabolism‐dependent behaviour in bacteria , 1998, Molecular microbiology.

[102]  L. Snyder,et al.  Molecular genetics of bacteria , 1997 .

[103]  P. Fischer,et al.  Controlled propulsion of artificial magnetic nanostructured propellers. , 2009, Nano letters.

[104]  T. Pedley,et al.  Hydrodynamic Phenomena in Suspensions of Swimming Microorganisms , 1992 .

[105]  John Mao,et al.  Phase I study of the intravenous administration of attenuated Salmonella typhimurium to patients with metastatic melanoma. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[106]  R. Goldstein,et al.  Self-concentration and large-scale coherence in bacterial dynamics. , 2004, Physical review letters.

[107]  J. Pawelek,et al.  Bacteria as tumour-targeting vectors. , 2003, The Lancet. Oncology.

[108]  Tatsuo Kawai,et al.  Optimum shape of a flagellated microorganism , 2001 .

[109]  Igor B. Zhulin,et al.  More Than One Way To Sense Chemicals , 2001, Journal of bacteriology.

[110]  H. Berg,et al.  Swarming Motility: It Better Be Wet , 2005, Current Biology.

[111]  S. Tsuneda,et al.  Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. , 2003, FEMS microbiology letters.

[112]  E DE ROBERTIS,et al.  Chemical Stimulation and Inhibition of Bacterial Motility Studied with a New Method.∗ , 1951, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[113]  Howard C. Berg,et al.  The proton flux through the bacterial flagellar motor , 1987, Cell.

[114]  Metin Sitti,et al.  Effect of quantity and configuration of attached bacteria on bacterial propulsion of microbeads , 2008 .

[115]  H. Busscher,et al.  Specific and non-specific interactions in bacterial adhesion to solid substrata , 1987 .

[116]  Johannes Lyklema,et al.  Bacterial adhesion: A physicochemical approach , 2005, Microbial Ecology.

[117]  Stoddart,et al.  Artificial Molecular Machines. , 2000, Angewandte Chemie.

[118]  J. Adler,et al.  Chemotaxis: Old and New , 1988 .

[119]  Darrell Velegol,et al.  Importance of molecular details in predicting bacterial adhesion to hydrophobic surfaces. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[120]  T J Pedley,et al.  The development of concentration gradients in a suspension of chemotactic bacteria. , 1995, Bulletin of mathematical biology.

[121]  H C Berg,et al.  Torque-generating units of the bacterial flagellar motor step independently. , 1996, Biophysical journal.

[122]  R N Doetsch,et al.  Effect of Viscosity on Bacterial Motility , 1974, Journal of bacteriology.

[123]  Metin Sitti,et al.  Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots , 2004 .

[124]  AJ Giaccia,et al.  Anticancer efficacy of systemically delivered anaerobic bacteria as gene therapy vectors targeting tumor hypoxia/necrosis , 2002, Gene Therapy.

[125]  Min Jun Kim,et al.  Use of bacterial carpets to enhance mixing in microfluidic systems , 2007 .

[126]  H. Berg,et al.  Chemotaxis of bacteria in glass capillary arrays. Escherichia coli, motility, microchannel plate, and light scattering. , 1990, Biophysical journal.

[127]  A T Chwang,et al.  A note on the helical movement of micro-organisms , 1971, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[128]  D. Brown,et al.  Temporal stimulation of chemotaxis in Escherichia coli. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[129]  F. Dahlquist,et al.  Statistical measures of bacterial motility and chemotaxis. , 1975, Journal of theoretical biology.

[130]  R. Firtel,et al.  The molecular genetics of chemotaxis: sensing and responding to chemoattractant gradients , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[131]  Min Jun Kim,et al.  Microfluidic pump powered by self-organizing bacteria. , 2008, Small.

[132]  H. Berg The rotary motor of bacterial flagella. , 2003, Annual review of biochemistry.

[133]  H. Berg,et al.  Torque-speed relationship of the flagellar rotary motor of Escherichia coli. , 2000, Biophysical journal.

[134]  J. Armitage,et al.  Motility, chemokinesis, and methylation-independent chemotaxis in Azospirillum brasilense , 1993, Journal of bacteriology.

[135]  Masayuki Hara,et al.  Noninvasive detachment of cells on cells , 2001 .

[136]  M. Ben-Artzi,et al.  Bacterial flagellar microhydrodynamics: Laminar flow over complex flagellar filaments, analog archimedean screws and cylinders, and its perturbations. , 2003, Biophysical journal.

[137]  Hans G. Othmer,et al.  The Diffusion Limit of Transport Equations II: Chemotaxis Equations , 2002, SIAM J. Appl. Math..

[138]  J. Adler,et al.  Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis , 1996, Journal of bacteriology.

[139]  D. Lauffenburger,et al.  Stochastic model of leukocyte chemosensory movement , 1987, Journal of mathematical biology.

[140]  Jun Amano,et al.  Bifidobacterium longum as a delivery system for gene therapy of chemically induced rat mammary tumors , 2001, Breast Cancer Research and Treatment.

[141]  E. Purcell Life at Low Reynolds Number , 2008 .

[142]  R. M. Ford,et al.  Random walk calculations for bacterial migration in porous media. , 1995, Biophysical journal.

[143]  Byoung-Chan Kim,et al.  Tunable metallic-like conductivity in microbial nanowire networks. , 2011, Nature nanotechnology.

[144]  J. A. Quinn,et al.  Random motility of swimming bacteria in restricted geometries , 1998 .

[145]  Michio Homma,et al.  Torque-speed relationships of Na+-driven chimeric flagellar motors in Escherichia coli. , 2008, Journal of molecular biology.

[146]  J. F. Ryder,et al.  Modeling microscopic swimmers at low Reynolds number. , 2007, The Journal of chemical physics.

[147]  Margot Vigeant,et al.  Oriented Adhesion of Escherichia coli to Polystyrene Particles , 2003, Applied and Environmental Microbiology.

[148]  M. A. Sleigh Mechanisms of flagellar propulsion , 1991 .

[149]  Wolfgang Alt,et al.  Chemotaxis of Gametes: A Diffusion Approximation , 1985 .

[150]  H. Craighead,et al.  Powering an inorganic nanodevice with a biomolecular motor. , 2000, Science.

[151]  Christopher A. Voigt,et al.  Genetic parts to program bacteria. , 2006, Current opinion in biotechnology.

[152]  Bert Vogelstein,et al.  Overcoming the hypoxic barrier to radiation therapy with anaerobic bacteria , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[153]  M Rosenberg,et al.  Bacterial adherence to polystyrene: a replica method of screening for bacterial hydrophobicity , 1981, Applied and environmental microbiology.

[154]  S. Martel,et al.  Controlled manipulation and actuation of micro-objects with magnetotactic bacteria , 2006 .

[155]  M. Holwill,et al.  A hydrodynamic study of the motility of flagellated bacteria. , 1963, Archives of biochemistry and biophysics.

[156]  I. Aranson,et al.  Concentration dependence of the collective dynamics of swimming bacteria. , 2007, Physical review letters.

[157]  Christopher P. Lowe,et al.  A hybrid particle/continuum model for micro-organism motility , 2001, Future Gener. Comput. Syst..

[158]  S. F. Goldstein,et al.  Genetics of motility and chemotaxis of a fascinating group of bacteria: the spirochetes. , 2002, Annual review of genetics.

[159]  Richard M. Crooks,et al.  Patterning bacteria within hyperbranched polymer film templates , 2002 .

[160]  P. Baveye,et al.  Effect of sodium chloride on transport of bacteria in a saturated aquifer material , 1991, Applied and environmental microbiology.

[161]  Thanh Tran-Cong,et al.  A boundary-element analysis of flagellar propulsion , 1987, Journal of Fluid Mechanics.

[162]  Min Jun Kim,et al.  Galvanotactic and phototactic control of Tetrahymena pyriformis as a microfluidic workhorse , 2009 .

[163]  L. Fauci,et al.  A computational model of the collective fluid dynamics of motile micro-organisms , 2002, Journal of Fluid Mechanics.

[164]  Wei Lin,et al.  Reduced efficiency of magnetotaxis in magnetotactic coccoid bacteria in higher than geomagnetic fields. , 2009, Biophysical journal.

[165]  Lixin Dong,et al.  Artificial bacterial flagella: Fabrication and magnetic control , 2009 .

[166]  V A Bloomfield,et al.  Hydrodynamic theory of swimming of flagellated microorganisms. , 1977, Biophysical journal.

[167]  J. Adler,et al.  "Decision"-Making in Bacteria: Chemotactic Response of Escherichia coli to Conflicting Stimuli , 1974, Science.

[168]  E. Purcell The efficiency of propulsion by a rotating flagellum. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[169]  H. Berg,et al.  Chemotaxis in Escherichia coli analysed by Three-dimensional Tracking , 1972, Nature.

[170]  D E Koshland,et al.  Bacterial motility and chemotaxis: light-induced tumbling response and visualization of individual flagella. , 1974, Journal of molecular biology.

[171]  A. Zehnder,et al.  Adsorption of bacterial surface polysaccharides on mineral oxides is mediated by hydrogen bonds , 1997 .

[172]  Christine Josenhans,et al.  Bacterial energy taxis: a global strategy? , 2010, Archives of Microbiology.

[173]  M. Alam,et al.  Myoglobin-like aerotaxis transducers in Archaea and Bacteria , 2000, Nature.

[174]  H. C. Nauts,et al.  The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. , 1946, Cancer research.

[175]  Malte Hermansson,et al.  Effects of Ionic Strength on Bacterial Adhesion and Stability of Flocs in a Wastewater Activated Sludge System , 1994, Applied and environmental microbiology.

[176]  George M Whitesides,et al.  Swimming in circles: motion of bacteria near solid boundaries. , 2005, Biophysical journal.

[177]  W. Alt Biased random walk models for chemotaxis and related diffusion approximations , 1980, Journal of mathematical biology.

[178]  Greg Huber,et al.  Kinematics of the swimming of Spiroplasma. , 2009, Physical review letters.

[179]  N. Preston,et al.  The motility of some clostridium species. , 1969, Journal of general microbiology.

[180]  J. Ramos,et al.  Diversity at its best: bacterial taxis. , 2011, Environmental microbiology.

[181]  Yuichi Hiratsuka,et al.  A microrotary motor powered by bacteria , 2006, Proceedings of the National Academy of Sciences.

[182]  M. J. Kim,et al.  Control of microfabricated structures powered by flagellated bacteria using phototaxis , 2007 .

[183]  M. V. van Loosdrecht,et al.  The role of bacterial cell wall hydrophobicity in adhesion , 1987, Applied and environmental microbiology.

[184]  M. Radmacher,et al.  pH Regulates Genes for Flagellar Motility, Catabolism, and Oxidative Stress in Escherichia coli K-12 , 2005, Journal of bacteriology.

[185]  J. Happel,et al.  Low Reynolds number hydrodynamics , 1965 .

[186]  J. S. Parkinson,et al.  Complementation analysis and deletion mapping of Escherichia coli mutants defective in chemotaxis , 1978, Journal of bacteriology.

[187]  Christophe Vieu,et al.  Controlled assembly of bacteria on chemical patterns using soft lithography. , 2008, Colloids and surfaces. B, Biointerfaces.

[188]  Roseanne M Ford,et al.  Characterizing the adhesion of motile and nonmotile Escherichia coli to a glass surface using a parallel-plate flow chamber. , 2002, Biotechnology and bioengineering.

[189]  Sharron McEldowney,et al.  Variability of the Influence of Physicochemical Factors Affecting Bacterial Adhesion to Polystyrene Substrata , 1986, Applied and environmental microbiology.

[190]  R. Bearon An extension of generalized Taylor dispersion in unbounded homogeneous shear flows to run-and-tumble chemotactic bacteria , 2003 .

[191]  H. Berg,et al.  Bacteria Swim by Rotating their Flagellar Filaments , 1973, Nature.

[192]  M Ramia,et al.  Numerical model for the locomotion of spirilla. , 1991, Biophysical journal.

[193]  Y. Okon,et al.  Aerotactic response of Azospirillum brasilense , 1982, Journal of bacteriology.

[194]  R. Blakemore,et al.  Navigational Compass in Magnetic Bacteria , 1980 .

[195]  Rachel W. Kasinskas,et al.  Salmonella typhimurium specifically chemotax and proliferate in heterogeneous tumor tissue in vitro , 2006, Biotechnology and bioengineering.

[196]  A N Glagolev,et al.  Reception of the energy level in bacterial taxis. , 1980, Journal of theoretical biology.

[197]  Tomonobu Goto,et al.  Numerical Analysis of Bacterium Motion Based on the Slender Body Theory , 2000 .

[198]  E. Greenberg,et al.  Motility of flagellated bacteria in viscous environments , 1977, Journal of bacteriology.

[199]  I. Zhulin,et al.  Oxygen taxis and proton motive force in Azospirillum brasilense , 1996, Journal of bacteriology.

[200]  R. Cortez,et al.  Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations , 2007 .

[201]  H. Berg,et al.  Moving fluid with bacterial carpets. , 2004, Biophysical journal.