Selective oxidation of buried AlGaAs for fabrication of vertical-cavity lasers

The authors discuss the selective conversion of buried layers of AlGaAs to a stable oxide and the implementation of this oxide into high performance vertical-cavity surface emitting lasers (VCSELs). The rate of lateral oxidation is shown to be linear with an Arrhenius temperature dependence. The measured activation energies vary with Al composition, providing a high degree of oxidation selectivity between AlGaAs alloys. Thus buried oxide layers can be selectively fabricated within the VCSEL through small compositional variations in the AlGaAs layers. The oxidation of AlGaAs alloys, as opposed to AlAs, is found to provide robust processing of reliable lasers. The insulating and low refractive index oxide provides enhanced electrical and optical confinement for ultralow threshold currents in oxide-apertured VCSELs.

[1]  Kent D. Choquette,et al.  Continuous wave operation of 640-660 nm selectively oxidised AlGaInP vertical-cavity lasers , 1995 .

[2]  Kent D. Choquette,et al.  Threshold investigation of oxide‐confined vertical‐cavity laser diodes , 1996 .

[3]  J. A. Lott,et al.  EPITAXIAL DESIGN AND PERFORMANCE OF AlGaInP RED (650–690 nm) VCSELs , 1994 .

[4]  Kent D. Choquette,et al.  Selectively oxidised vertical cavity surface emitting lasers with 50% power conversion efficiency , 1995 .

[5]  K. Geib,et al.  Low threshold voltage vertical-cavity lasers fabricated by selective oxidation , 1994 .

[6]  K. Geib,et al.  Fabrication and performance of selectively oxidized vertical-cavity lasers , 1995, IEEE Photonics Technology Letters.

[7]  G. Hasnain,et al.  GaAs vertical-cavity surface emitting lasers fabricated by reactive ion etching , 1991, IEEE Photonics Technology Letters.

[8]  N. Vodjdani,et al.  Huge birefringence in selectively oxidized GaAs/AlAs optical waveguides , 1996 .

[9]  A. S. Grove,et al.  General Relationship for the Thermal Oxidation of Silicon , 1965 .

[10]  Kent D. Choquette,et al.  Microstructure of laterally oxidized AlxGa1−xAs layers in vertical‐cavity lasers , 1996 .

[11]  Nick Holonyak,et al.  AlxGa1−xAs–GaAs metal–oxide semiconductor field effect transistors formed by lateral water vapor oxidation of AlAs , 1995 .

[12]  N. Holonyak,et al.  Native‐oxide stripe‐geometry AlxGa1−xAs‐GaAs quantum well heterostructure lasers , 1991 .

[13]  B. Tell,et al.  Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85 mu m , 1990 .

[14]  R. Schneider,et al.  Uniparabolic mirror grading for vertical cavity surface emitting lasers , 1996 .

[15]  D. Deppe,et al.  Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .

[16]  A. R. Sugg,et al.  Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .

[17]  Diana L. Huffaker,et al.  Low threshold half-wave vertical-cavity lasers , 1994 .

[18]  Kent D. Choquette,et al.  Modal analysis of a small surface emitting laser with a selectively oxidized waveguide , 1995 .

[19]  Kent D. Choquette,et al.  Cavity Characteristics of Selectively Oxidized Vertical-Cavity Lasers , 1995, Quantum Optoelectronics.

[20]  K. Choquette,et al.  Vertical cavity surface emitting lasers with 21% efficiency by metalorganic vapor phase epitaxy , 1994, IEEE Photonics Technology Letters.

[21]  P. Dapkus,et al.  Ultralow threshold current vertical-cavity surface-emitting lasers obtained with selective oxidation , 1995 .

[22]  William H. Steier,et al.  Wide-bandwidth distributed Bragg reflectors using oxide/GaAs multilayers , 1994 .