microRNAs and death receptors.

Death receptors induce apoptosis through either the Type I or II pathway. In Type I cells, the initiator caspase-8 directly activates effector caspases such as caspase-3, whereas in Type II cells, the death signal is amplified through mitochondria thereby activating effector caspases causing cell death. Recently, there have been advances in elucidating the early events in the CD95 signaling pathways and how post-translational modifications regulate CD95 signaling. This review will focus on recent insights into the mechanisms of the two different types of CD95 signaling pathways, and will introduce miRNAs as regulators of death receptor signaling.

[1]  R. Siegel,et al.  Cutting Edge: Rac GTPases Sensitize Activated T Cells to Die via Fas1 , 2007, The Journal of Immunology.

[2]  Robert L Moritz,et al.  Identification of DIABLO, a Mammalian Protein that Promotes Apoptosis by Binding to and Antagonizing IAP Proteins , 2000, Cell.

[3]  B. Cullen Transcription and processing of human microRNA precursors. , 2004, Molecular cell.

[4]  Kathryn A. O’Donnell,et al.  c-Myc-regulated microRNAs modulate E2F1 expression , 2005, Nature.

[5]  Anindya Dutta,et al.  The tumor suppressor microRNA let-7 represses the HMGA2 oncogene. , 2007, Genes & development.

[6]  Y. Akao,et al.  let-7 microRNA functions as a potential growth suppressor in human colon cancer cells. , 2006, Biological & pharmaceutical bulletin.

[7]  Christian A. Rees,et al.  Systematic variation in gene expression patterns in human cancer cell lines , 2000, Nature Genetics.

[8]  I. Screpanti,et al.  Expression of the HMGI(Y) gene products in human neuroblastic tumours correlates with differentiation status , 2000, British Journal of Cancer.

[9]  Ying Feng,et al.  Supplemental Data P53-mediated Activation of Mirna34 Candidate Tumor-suppressor Genes , 2022 .

[10]  Xiaodong Wang,et al.  Bid, a Bcl2 Interacting Protein, Mediates Cytochrome c Release from Mitochondria in Response to Activation of Cell Surface Death Receptors , 1998, Cell.

[11]  A. Bradley,et al.  Identification of mammalian microRNA host genes and transcription units. , 2004, Genome research.

[12]  Ingo Schmitz,et al.  Differential Modulation of Apoptosis Sensitivity in CD95 Type I and Type II Cells* , 1999, The Journal of Biological Chemistry.

[13]  Ramana V. Davuluri,et al.  Direct coupling of the cell cycle and cell death machinery by E2F , 2002, Nature Cell Biology.

[14]  S. Schreiber,et al.  Fas signal transduction triggers either proliferation or apoptosis in human fibroblasts. , 1997, The Journal of investigative dermatology.

[15]  T Takahashi,et al.  Apoptosis induction by antisense oligonucleotides against miR-17-5p and miR-20a in lung cancers overexpressing miR-17-92 , 2007, Oncogene.

[16]  J C Reed,et al.  Mitochondria and apoptosis. , 1998, Science.

[17]  M. Peter,et al.  Palmitoylation of CD95 facilitates formation of SDS‐stable receptor aggregates that initiate apoptosis signaling , 2007, The EMBO journal.

[18]  V. Tarasov,et al.  Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest , 2007, Cell cycle.

[19]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[20]  G. Hutvagner,et al.  Principles and effects of microRNA-mediated post-transcriptional gene regulation , 2006, Oncogene.

[21]  Michel J. Weber New human and mouse microRNA genes found by homology search , 2004, The FEBS journal.

[22]  C. Hallas,et al.  The role of receptor internalization in CD95 signaling , 2006, The EMBO journal.

[23]  S. Daburon,et al.  Cutting Edge: Modulation of Fas-Mediated Apoptosis by Lipid Rafts in T Lymphocytes1 , 2006, The Journal of Immunology.

[24]  A. Krogh,et al.  Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells* , 2008, Journal of Biological Chemistry.

[25]  E. Yeh,et al.  Activation-induced Aggregation and Processing of the Human Fas Antigen* , 1997, The Journal of Biological Chemistry.

[26]  D. Ginsberg,et al.  Up-regulation of Bcl-2 Homology 3 (BH3)-only Proteins by E2F1 Mediates Apoptosis* , 2004, Journal of Biological Chemistry.

[27]  B. Cullen,et al.  Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. , 2003, Genes & development.

[28]  J. Wigginton,et al.  Lack of FasL-mediated killing leads to in vivo tumor promotion in mouse Lewis lung cancer , 2003, Apoptosis.

[29]  Xiaodong Wang,et al.  Smac, a Mitochondrial Protein that Promotes Cytochrome c–Dependent Caspase Activation by Eliminating IAP Inhibition , 2000, Cell.

[30]  A. Levine,et al.  p53 and E2F-1 cooperate to mediate apoptosis. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[31]  H. Wajant,et al.  The extracellular domains of FasL and Fas are sufficient for the formation of supramolecular FasL-Fas clusters of high stability , 2005, The Journal of cell biology.

[32]  C. Croce,et al.  A microRNA expression signature of human solid tumors defines cancer gene targets , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[33]  F. Ramsdell,et al.  Fas transduces activation signals in normal human T lymphocytes , 1993, The Journal of experimental medicine.

[34]  E. Lai Micro RNAs are complementary to 3′ UTR sequence motifs that mediate negative post-transcriptional regulation , 2002, Nature Genetics.

[35]  Hai-Tao He,et al.  An essential role for membrane rafts in the initiation of Fas/CD95‐triggered cell death in mouse thymocytes , 2002, EMBO reports.

[36]  Alicia Algeciras-Schimnich,et al.  Two CD95 tumor classes with different sensitivities to antitumor drugs , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. Peter,et al.  Two CD95 (APO‐1/Fas) signaling pathways , 1998, The EMBO journal.

[38]  Moshe Oren,et al.  Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. , 2007, Molecular cell.

[39]  Ralph Weissleder,et al.  MicroRNA-21 knockdown disrupts glioma growth in vivo and displays synergistic cytotoxicity with neural precursor cell delivered S-TRAIL in human gliomas. , 2007, Cancer research.

[40]  J. Nevins,et al.  Selective induction of E2F1 in response to DNA damage, mediated by ATM-dependent phosphorylation. , 2001, Genes & development.

[41]  S. Srinivasula,et al.  Cytochrome c and dATP-Dependent Formation of Apaf-1/Caspase-9 Complex Initiates an Apoptotic Protease Cascade , 1997, Cell.

[42]  H. Nakayama,et al.  A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. , 2001, Molecular cell.

[43]  E. Kistner,et al.  Let-7 expression defines two differentiation stages of cancer , 2007, Proceedings of the National Academy of Sciences.

[44]  G. Gores,et al.  mir-29 regulates Mcl-1 protein expression and apoptosis , 2007, Oncogene.

[45]  M. Byrom,et al.  Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis , 2005, Nucleic acids research.

[46]  T. Jacks,et al.  Tumor Induction and Tissue Atrophy in Mice Lacking E2F-1 , 1996, Cell.

[47]  C. Croce,et al.  miR-15 and miR-16 induce apoptosis by targeting BCL2. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[48]  M. Peter,et al.  CD95 ligand induces motility and invasiveness of apoptosis‐resistant tumor cells , 2004, The EMBO journal.

[49]  L. Ricci-Vitiani,et al.  CD95 death‐inducing signaling complex formation and internalization occur in lipid rafts of type I and type II cells , 2004, European journal of immunology.

[50]  M. Peter,et al.  The CD95 type I/type II model. , 2003, Seminars in immunology.

[51]  Michael A. Beer,et al.  Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. , 2007, Molecular cell.

[52]  G. Chiappetta,et al.  The expression of the high mobility group HMGI (Y) proteins correlates with the malignant phenotype of human thyroid neoplasias. , 1995, Oncogene.

[53]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[54]  V. Ambros The functions of animal microRNAs , 2004, Nature.

[55]  Joshua J. Forman,et al.  “Myc’ed Messages”: Myc Induces Transcription of E2F1 while Inhibiting Its Translation via a microRNA Polycistron , 2007, PLoS genetics.

[56]  Xu Luo,et al.  Endonuclease G is an apoptotic DNase when released from mitochondria , 2001, Nature.

[57]  E. Miska,et al.  MicroRNA functions in animal development and human disease , 2005, Development.

[58]  M. Peter,et al.  The CD95 Receptor: Apoptosis Revisited , 2007, Cell.

[59]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[60]  Debora S. Marks,et al.  Antisense-Mediated Depletion Reveals Essential and Specific Functions of MicroRNAs in Drosophila Development , 2005, Cell.

[61]  K. Kosik,et al.  MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. , 2005, Cancer research.

[62]  M. Hengartner The biochemistry of apoptosis , 2000, Nature.

[63]  Brian S. Roberts,et al.  The colorectal microRNAome. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[64]  G. Gores,et al.  Mcl-1 Mediates Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Resistance in Human Cholangiocarcinoma Cells , 2004, Cancer Research.

[65]  P. Kiener,et al.  Fas (CD95) Induces Proinflammatory Cytokine Responses by Human Monocytes and Monocyte-Derived Macrophages12 , 2003, The Journal of Immunology.

[66]  R. Stephens,et al.  Unique microRNA molecular profiles in lung cancer diagnosis and prognosis. , 2006, Cancer cell.

[67]  David P. Bartel,et al.  Supporting Online Material Materials and Methods Fig. S1 Tables S1 and S2 References Database S1 Disrupting the Pairing between Let-7 and Hmga2 Enhances Oncogenic Transformation , 2022 .

[68]  R. Plasterk,et al.  MicroRNA function in animal development , 2005, FEBS letters.

[69]  S. Lowe,et al.  A microRNA polycistron as a potential human oncogene , 2005, Nature.

[70]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[71]  Vincent De Guire,et al.  An E2F/miR-20a Autoregulatory Feedback Loop* , 2007, Journal of Biological Chemistry.

[72]  John Calvin Reed,et al.  Mechanisms of apoptosis sensitivity and resistance to the BH3 mimetic ABT-737 in acute myeloid leukemia. , 2006, Cancer cell.

[73]  Y. Yatabe,et al.  Reduced Expression of the let-7 MicroRNAs in Human Lung Cancers in Association with Shortened Postoperative Survival , 2004, Cancer Research.

[74]  R. Carthew Gene regulation by microRNAs. , 2006, Current opinion in genetics & development.

[75]  D. Marguet,et al.  Palmitoylation is required for efficient Fas cell death signaling , 2007, The EMBO journal.

[76]  Shuomin Zhu,et al.  MicroRNA-21 Targets the Tumor Suppressor Gene Tropomyosin 1 (TPM1)* , 2007, Journal of Biological Chemistry.

[77]  S. Knuutila,et al.  Increased expression of high mobility group A proteins in lung cancer , 2006, The Journal of pathology.

[78]  R. Birge,et al.  Fas engagement induces neurite growth through ERK activation and p35 upregulation , 2003, Nature Cell Biology.

[79]  Brian J. Smith,et al.  Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. , 2005, Molecular cell.

[80]  K. Ghoshal,et al.  MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. , 2007, Gastroenterology.

[81]  B. Pützer,et al.  E2F1-induced apoptosis: turning killers into therapeutics. , 2006, Trends in molecular medicine.

[82]  B. Reinhart,et al.  The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans , 2000, Nature.

[83]  G. Gores,et al.  Interleukin-6 contributes to Mcl-1 up-regulation and TRAIL resistance via an Akt-signaling pathway in cholangiocarcinoma cells. , 2005, Gastroenterology.

[84]  C. Burge,et al.  Conserved Seed Pairing, Often Flanked by Adenosines, Indicates that Thousands of Human Genes are MicroRNA Targets , 2005, Cell.

[85]  Charles D. Johnson,et al.  Genome-scale microRNA and small interfering RNA screens identify small RNA modulators of TRAIL-induced apoptosis pathway. , 2007, Cancer research.

[86]  E. White,et al.  DNA damage response and MCL-1 destruction initiate apoptosis in adenovirus-infected cells. , 2003, Genes & development.

[87]  A. Algeciras-Schimnich,et al.  Actin dependent CD95 internalization is specific for Type I cells , 2003, FEBS letters.

[88]  Y. Yatabe,et al.  A polycistronic microRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. , 2005, Cancer research.

[89]  Pasko Rakic,et al.  Microarray analysis of microRNA expression in the developing mammalian brain , 2004, Genome Biology.

[90]  Ruedi Aebersold,et al.  Molecular characterization of mitochondrial apoptosis-inducing factor , 1999, Nature.

[91]  R. Siegel,et al.  Ligand-independent redistribution of Fas (CD95) into lipid rafts mediates clonotypic T cell death , 2004, Nature Immunology.

[92]  J. M. Thomson,et al.  Direct Regulation of an Oncogenic Micro-RNA Cluster by E2F Transcription Factors* , 2007, Journal of Biological Chemistry.

[93]  Sun-Mi Park,et al.  Non-apoptotic Signaling Pathways Activated by Soluble Fas Ligand in Serum-starved Human Fibroblasts , 2001, The Journal of Biological Chemistry.

[94]  Kenji Konaka,et al.  Fas Ligand Induces Cell-autonomous NF-κB Activation and Interleukin-8 Production by a Mechanism Distinct from That of Tumor Necrosis Factor-α* , 2004, Journal of Biological Chemistry.

[95]  Bruce A. Hay,et al.  The Drosophila MicroRNA Mir-14 Suppresses Cell Death and Is Required for Normal Fat Metabolism , 2003, Current Biology.

[96]  M. Peter,et al.  Cytotoxicity‐dependent APO‐1 (Fas/CD95)‐associated proteins form a death‐inducing signaling complex (DISC) with the receptor. , 1995, The EMBO journal.

[97]  C. Hallas,et al.  Lee, K. H. et al. The role of receptor internalization in CD95 signaling. EMBO J. 25, 1009-1023 , 2006 .

[98]  Y. Atomi,et al.  An increased high-mobility group A2 expression level is associated with malignant phenotype in pancreatic exocrine tissue , 2003, British Journal of Cancer.

[99]  R. Russell,et al.  bantam Encodes a Developmentally Regulated microRNA that Controls Cell Proliferation and Regulates the Proapoptotic Gene hid in Drosophila , 2003, Cell.

[100]  Alicia Algeciras-Schimnich,et al.  Molecular Ordering of the Initial Signaling Events of CD95 , 2002, Molecular and Cellular Biology.

[101]  E. Furth,et al.  Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster , 2006, Nature Genetics.

[102]  Junying Yuan,et al.  Cleavage of BID by Caspase 8 Mediates the Mitochondrial Damage in the Fas Pathway of Apoptosis , 1998, Cell.

[103]  Sun-Mi Park,et al.  Let-7 Prevents Early Cancer Progression by Suppressing Expression of the Embryonic Gene HMGA2 , 2007, Cell cycle.

[104]  C. Croce,et al.  Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[105]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[106]  V. Kim,et al.  The nuclear RNase III Drosha initiates microRNA processing , 2003, Nature.

[107]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[108]  S. Cohen,et al.  The bantam gene regulates Drosophila growth. , 2002, Genetics.

[109]  C. Perou,et al.  A custom microarray platform for analysis of microRNA gene expression , 2004, Nature Methods.

[110]  F. Slack,et al.  Oncomirs — microRNAs with a role in cancer , 2006, Nature Reviews Cancer.

[111]  S. Lowe,et al.  The p53–Bcl-2 connection , 2006, Cell Death and Differentiation.

[112]  H. Tagawa,et al.  Synergistic action of the microRNA‐17 polycistron and Myc in aggressive cancer development , 2007, Cancer science.

[113]  J. Lieberman,et al.  let-7 Regulates Self Renewal and Tumorigenicity of Breast Cancer Cells , 2007, Cell.

[114]  F. Slack,et al.  RAS Is Regulated by the let-7 MicroRNA Family , 2005, Cell.