Organic acid toxicity, tolerance, and production in Escherichia coli biorefining applications

[1]  K. Deffeyes Hubbert’s Peak: The Impending World Oil Shortage , 2008 .

[2]  I. Booth,et al.  The regulation of intracellular pH in bacteria. , 2007, Novartis Foundation symposium.

[3]  R. Bachmann,et al.  Industry Overview;From promise to profit , 2005 .

[4]  Katsuhiko Kitamoto,et al.  Genetically Engineered Wine Yeast Produces a High Concentration of l-Lactic Acid of Extremely High Optical Purity , 2005, Applied and Environmental Microbiology.

[5]  M. Radmacher,et al.  pH Regulates Genes for Flagellar Motility, Catabolism, and Oxidative Stress in Escherichia coli K-12 , 2005, Journal of bacteriology.

[6]  Johnathan E. Holladay,et al.  Top Value Added Chemicals From Biomass. Volume 1 - Results of Screening for Potential Candidates From Sugars and Synthesis Gas , 2004 .

[7]  J. Pronk,et al.  Microbial export of lactic and 3-hydroxypropanoic acid: implications for industrial fermentation processes. , 2004, Metabolic engineering.

[8]  John W. Foster,et al.  Escherichia coli Glutamate- and Arginine-Dependent Acid Resistance Systems Increase Internal pH and Reverse Transmembrane Potential , 2004, Journal of bacteriology.

[9]  Pradip K. Roychoudhury,et al.  L (+) lactic acid fermentation and its product polymerization , 2004 .

[10]  S. Herrera,et al.  Industrial biotechnology—a chance at redemption , 2004, Nature Biotechnology.

[11]  M. Gänzle Reutericyclin: biological activity, mode of action, and potential applications , 2004, Applied Microbiology and Biotechnology.

[12]  J. Keasling,et al.  Engineering a mevalonate pathway in Escherichia coli for production of terpenoids , 2003, Nature Biotechnology.

[13]  M. Ikeda,et al.  The Corynebacterium glutamicum genome: features and impacts on biotechnological processes , 2003, Applied Microbiology and Biotechnology.

[14]  Yen Chang,et al.  Biocompatibility study of biological tissues fixed by a natural compound (reuterin) produced by Lactobacillus reuteri. , 2002, Biomaterials.

[15]  I. Booth,et al.  Inhibition of Escherichia coli growth by acetic acid: a problem with methionine biosynthesis and homocysteine toxicity. , 2002, Microbiology.

[16]  V. Gavrilovic,et al.  Genome shuffling of Lactobacillus for improved acid tolerance , 2002, Nature Biotechnology.

[17]  G. Stephanopoulos,et al.  Genome-wide screening for trait conferring genes using DNA microarrays , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  Q. Lüthi-Peng,et al.  Effect of glucose on glycerol bioconversion by Lactobacillus reuteri , 2002, Applied Microbiology and Biotechnology.

[19]  M. A. Eiteman,et al.  Effects of Growth Mode and Pyruvate Carboxylase on Succinic Acid Production by Metabolically Engineered Strains of Escherichia coli , 2002, Applied and Environmental Microbiology.

[20]  M. Rasch The influence of temperature, salt and pH on the inhibitory effect of reuterin on Escherichia coli. , 2002, International journal of food microbiology.

[21]  Thomas K. Wood,et al.  Directed Evolution of Toluene ortho-Monooxygenase for Enhanced 1-Naphthol Synthesis and Chlorinated Ethene Degradation , 2002, Journal of bacteriology.

[22]  Yuliya Yoncheva,et al.  Acetate and Formate Stress: Opposite Responses in the Proteome of Escherichia coli , 2001, Journal of bacteriology.

[23]  B. Dien,et al.  Recombinant Escherichia coli engineered for production of L-lactic acid from hexose and pentose sugars , 2001, Journal of Industrial Microbiology and Biotechnology.

[24]  K. Vorlop,et al.  Biotechnological production of itaconic acid , 2001, Applied Microbiology and Biotechnology.

[25]  J. Nielsen,et al.  Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration , 2001, Applied Microbiology and Biotechnology.

[26]  M. Kumar,et al.  The commercial production of chemicals using pathway engineering. , 2000, Biochimica et biophysica acta.

[27]  David J. Baumler,et al.  Contribution of dps to Acid Stress Tolerance and Oxidative Stress Tolerance in Escherichia coli O157:H7 , 2000, Applied and Environmental Microbiology.

[28]  Frances H. Arnold,et al.  Molecular breeding of carotenoid biosynthetic pathways , 2000, Nature Biotechnology.

[29]  C. Rosenow,et al.  Monitoring gene expression using DNA microarrays. , 2000, Current opinion in microbiology.

[30]  W. R. Farmer,et al.  Improving lycopene production in Escherichia coli by engineering metabolic control , 2000, Nature Biotechnology.

[31]  John W. Foster,et al.  Control of Acid Resistance inEscherichia coli , 1999, Journal of bacteriology.

[32]  J. Zeikus,et al.  Biotechnology of succinic acid production and markets for derived industrial products , 1999, Applied Microbiology and Biotechnology.

[33]  Jae-Gu Pan,et al.  Homofermentative Production of d- orl-Lactate in Metabolically Engineered Escherichia coli RR1 , 1999, Applied and Environmental Microbiology.

[34]  C. S. Millard,et al.  A novel fermentation pathway in anEscherichia coli mutant producing succinic acid, acetic acid, and ethanol , 1998, Applied biochemistry and biotechnology.

[35]  Ian R. Booth,et al.  Perturbation of Anion Balance during Inhibition of Growth of Escherichia coli by Weak Acids , 1998, Journal of bacteriology.

[36]  W. Stemmer,et al.  DNA shuffling of a family of genes from diverse species accelerates directed evolution , 1998, Nature.

[37]  Kelvin H. Lee,et al.  Inverse metabolic engineering: a strategy for directed genetic engineering of useful phenotypes. , 1996, Biotechnology and bioengineering.

[38]  G. Bennett,et al.  Mechanisms of acid resistance in enterohemorrhagic Escherichia coli , 1996, Applied and environmental microbiology.

[39]  J. Foster,et al.  Comparative analysis of extreme acid survival in Salmonella typhimurium, Shigella flexneri, and Escherichia coli , 1995, Journal of bacteriology.

[40]  W. Stemmer Rapid evolution of a protein in vitro by DNA shuffling , 1994, Nature.

[41]  W. Epstein,et al.  Interdependence of K+ and glutamate accumulation during osmotic adaptation of Escherichia coli. , 1994, The Journal of biological chemistry.

[42]  A. Halestrap,et al.  Transport of lactate and other monocarboxylates across mammalian plasma membranes. , 1993, The American journal of physiology.

[43]  G. Stephanopoulos,et al.  Network rigidity and metabolic engineering in metabolite overproduction , 1991, Science.

[44]  J. Bailey,et al.  Toward a science of metabolic engineering , 1991, Science.

[45]  S. P. Fodor,et al.  Light-directed, spatially addressable parallel chemical synthesis. , 1991, Science.

[46]  R. Rowbury,et al.  Habituation to normally lethal acidity by prior growth of Escherichia coli at a sub‐lethal acid pH value , 1989 .

[47]  A. Matin,et al.  Mechanism of delta pH maintenance in active and inactive cells of an obligately acidophilic bacterium , 1986, Journal of bacteriology.

[48]  A. Lehninger Principles of Biochemistry , 1984 .

[49]  R. G. Kroll,et al.  The relationship between intracellular pH, the pH gradient and potassium transport in Escherichia coli. , 1983, The Biochemical journal.

[50]  A. Walter,et al.  Monocarboxylic acid permeation through lipid bilayer membranes , 2005, The Journal of Membrane Biology.

[51]  Michael Knauf,et al.  Lignocellulosic biomass processing: a perspective. , 2004 .

[52]  J. Foster,et al.  Acid resistance in Escherichia coli. , 2003, Advances in applied microbiology.

[53]  J. Ohnishi,et al.  A novel methodology employing Corynebacterium glutamicum genome information to generate a new L-lysine-producing mutant , 2001, Applied Microbiology and Biotechnology.