Improving ESOP-Based Synthesis of Reversible Logic Using Evolutionary Algorithms
暂无分享,去创建一个
[1] Jean-Pierre Deschamps,et al. Discrete and switching functions , 1978 .
[2] R. Merkle. Reversible electronic logic using switches , 1993 .
[3] R Cuykendall,et al. Reversible optical computing circuits. , 1987, Optics letters.
[4] R. Landauer,et al. Irreversibility and heat generation in the computing process , 1961, IBM J. Res. Dev..
[5] Tommaso Toffoli,et al. Reversible Computing , 1980, ICALP.
[6] Marek A. Perkowski,et al. Minimization of exclusive sum-of-products expressions for multiple-valued input, incompletely specified functions , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[7] Stefan Frehse,et al. RevKit: An Open Source Toolkit for the Design of Reversible Circuits , 2011, RC.
[8] Darrell Whitley,et al. Scheduling problems and traveling salesman: the genetic edge recombination , 1989 .
[9] Robin Milner,et al. On Observing Nondeterminism and Concurrency , 1980, ICALP.
[10] M. Thornton,et al. ESOP-based Toffoli Gate Cascade Generation , 2007, 2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing.
[11] Irving S. Reed,et al. A class of multiple-error-correcting codes and the decoding scheme , 1954, Trans. IRE Prof. Group Inf. Theory.
[12] Stefan Frehse,et al. RevKit: A Toolkit for Reversible Circuit Design , 2012, J. Multiple Valued Log. Soft Comput..
[13] Robert Wille,et al. BDD-based synthesis of reversible logic for large functions , 2009, 2009 46th ACM/IEEE Design Automation Conference.
[14] James A. Hutchby,et al. Limits to binary logic switch scaling - a gedanken model , 2003, Proc. IEEE.
[15] Randal E. Bryant,et al. Graph-Based Algorithms for Boolean Function Manipulation , 1986, IEEE Transactions on Computers.
[16] Charles H. Bennett,et al. Logical reversibility of computation , 1973 .
[17] Alexis De Vos,et al. A reversible carry-look-ahead adder using control gates , 2002, Integr..
[18] Fabio Somenzi,et al. CUDD: CU Decision Diagram Package Release 2.2.0 , 1998 .
[19] Rolf Drechsler,et al. An Evolutionary Algorithm for Optimization of Pseudo Kronecker Expressions , 2010, 2010 40th IEEE International Symposium on Multiple-Valued Logic.
[20] Robert Glück,et al. Optimized reversible binary-coded decimal adders , 2008, J. Syst. Archit..
[21] L. Darrell Whitley,et al. Scheduling Problems and Traveling Salesmen: The Genetic Edge Recombination Operator , 1989, International Conference on Genetic Algorithms.
[22] Maarten Keijzer,et al. Evolving Objects: A General Purpose Evolutionary Computation Library , 2001, Artificial Evolution.
[23] Gerhard W. Dueck,et al. A transformation based algorithm for reversible logic synthesis , 2003, Proceedings 2003. Design Automation Conference (IEEE Cat. No.03CH37451).
[24] John P. Hayes,et al. Synthesis of reversible logic circuits , 2003, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..
[25] Thierry Paul,et al. Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.
[26] David E. Goldberg,et al. Alleles, loci and the traveling salesman problem , 1985 .
[27] David E. Goldberg,et al. AllelesLociand the Traveling Salesman Problem , 1985, ICGA.
[28] Niraj K. Jha,et al. An Algorithm for Synthesis of Reversible Logic Circuits , 2006, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.