Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis

White matter characterization studies use the information provided by diffusion magnetic resonance imaging (dMRI) to draw cross-population inferences. However, the structure, function, and white matter geometry vary across individuals. Here, we propose a subject fingerprint, called Fiberprint, to quantify the individual uniqueness in white matter geometry using fiber trajectories. We learn a sparse coding representation for fiber trajectories by mapping them to a common space defined by a dictionary. A subject fingerprint is then generated by applying a pooling function for each bundle, thus providing a vector of bundle-wise features describing a particular subject's white matter geometry. These features encode unique properties of fiber trajectories, such as their density along prominent bundles. An analysis of data from 861 Human Connectome Project subjects reveals that a fingerprint based on approximately 3000 fiber trajectories can uniquely identify exemplars from the same individual. We also use fingerprints for twin/sibling identification, our observations consistent with the twin data studies of white matter integrity. Our results demonstrate that the proposed Fiberprint can effectively capture the variability in white matter fiber geometry across individuals, using a compact feature vector (dimension of 50), making this framework particularly attractive for handling large datasets.

[1]  Katrin Amunts,et al.  White matter fiber tracts of the human brain: Three-dimensional mapping at microscopic resolution, topography and intersubject variability , 2006, NeuroImage.

[2]  Carl-Fredrik Westin,et al.  Unbiased Groupwise Registration of White Matter Tractography , 2012, MICCAI.

[3]  Michael Elad,et al.  On the Role of Sparse and Redundant Representations in Image Processing , 2010, Proceedings of the IEEE.

[4]  Paul M. Thompson,et al.  Population learning of structural connectivity by white matter encoding and decoding , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[5]  Steen Moeller,et al.  Heritability of fractional anisotropy in human white matter: A comparison of Human Connectome Project and ENIGMA-DTI data , 2015, NeuroImage.

[6]  Jean Gotman,et al.  SPARK: Sparsity-based analysis of reliable k-hubness and overlapping network structure in brain functional connectivity , 2016, NeuroImage.

[7]  Carl-Fredrik Westin,et al.  Clustering Fiber Traces Using Normalized Cuts , 2004, MICCAI.

[8]  Yihong Gong,et al.  Linear spatial pyramid matching using sparse coding for image classification , 2009, CVPR.

[9]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[10]  Fang-Cheng Yeh,et al.  Connectometry: A statistical approach harnessing the analytical potential of the local connectome , 2016, NeuroImage.

[11]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[12]  M. Chou,et al.  Principles and Limitations of Computational Algorithms in Clinical Diffusion Tensor MR Tractography , 2010, American Journal of Neuroradiology.

[13]  Guy B. Williams,et al.  QuickBundles, a Method for Tractography Simplification , 2012, Front. Neurosci..

[14]  M D'Esposito,et al.  The roles of prefrontal brain regions in components of working memory: effects of memory load and individual differences. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[15]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[16]  Chris H. Q. Ding,et al.  Orthogonal nonnegative matrix t-factorizations for clustering , 2006, KDD '06.

[17]  Paul M. Thompson,et al.  Discovery of genes that affect human brain connectivity: A genome-wide analysis of the connectome , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[18]  Paul M. Thompson,et al.  Fractional anisotropy of cerebral white matter and thickness of cortical gray matter across the lifespan , 2011, NeuroImage.

[19]  Allen Y. Yang,et al.  Robust Face Recognition via Sparse Representation , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Carl-Fredrik Westin,et al.  Fiber clustering versus the parcellation-based connectome , 2013, NeuroImage.

[21]  Carl-Fredrik Westin,et al.  White Matter Tract Clustering and Correspondence in Populations , 2005, MICCAI.

[22]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[23]  Christa Neuper,et al.  Individual differences in mathematical competence predict parietal brain activation during mental calculation , 2007, NeuroImage.

[24]  Anna Vilanova,et al.  Evaluation of fiber clustering methods for diffusion tensor imaging , 2005, VIS 05. IEEE Visualization, 2005..

[25]  Mark Jenkinson,et al.  The minimal preprocessing pipelines for the Human Connectome Project , 2013, NeuroImage.

[26]  Timothy D. Verstynen,et al.  Deterministic Diffusion Fiber Tracking Improved by Quantitative Anisotropy , 2013, PloS one.

[27]  Sang Won Seo,et al.  Sparse SPM: Group Sparse-dictionary learning in SPM framework for resting-state functional connectivity MRI analysis , 2016, NeuroImage.

[28]  Rama Chellappa,et al.  Kernel dictionary learning , 2012, 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[29]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[30]  Barnabás Póczos,et al.  Quantifying Differences and Similarities in Whole-brain White Matter Architecture Using Local Connectome Fingerprints , 2016 .

[31]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[32]  M. Chun,et al.  Functional connectome fingerprinting: Identifying individuals based on patterns of brain connectivity , 2015, Nature Neuroscience.

[33]  G. Ascoli,et al.  Computational Neuroanatomy , 2002, Humana Press.

[34]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[35]  Barnabás Póczos,et al.  Local Connectome Fingerprinting Reveals the Uniqueness of Individual White Matter Architecture , 2016 .

[36]  J. Rademacher,et al.  Variability and asymmetry in the human precentral motor system. A cytoarchitectonic and myeloarchitectonic brain mapping study. , 2001, Brain : a journal of neurology.

[37]  Kuldeep Kumar,et al.  A sparse coding approach for the efficient representation and segmentation of white matter fibers , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).

[38]  Guido Gerig,et al.  Towards a shape model of white matter fiber bundles using diffusion tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[39]  Maxime Descoteaux,et al.  Robust and efficient linear registration of white-matter fascicles in the space of streamlines , 2015, NeuroImage.

[40]  Paul M. Thompson,et al.  Automatic clustering of white matter fibers in brain diffusion MRI with an application to genetics , 2014, NeuroImage.

[41]  Fang-Cheng Yeh,et al.  NTU-90: A high angular resolution brain atlas constructed by q-space diffeomorphic reconstruction , 2011, NeuroImage.

[42]  Rachid Deriche,et al.  Unsupervised white matter fiber clustering and tract probability map generation: Applications of a Gaussian process framework for white matter fibers , 2010, NeuroImage.

[43]  Alan C. Evans,et al.  Brain Connectivity , 2011, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[44]  M. Raichle,et al.  Tracking neuronal fiber pathways in the living human brain. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[45]  Pietro Gori,et al.  Parsimonious Approximation of Streamline Trajectories in White Matter Fiber Bundles , 2016, IEEE Transactions on Medical Imaging.

[46]  Woei-Chyn Chu,et al.  Sex-linked white matter microstructure of the social and analytic brain , 2011, NeuroImage.

[47]  Steen Moeller,et al.  The Human Connectome Project: A data acquisition perspective , 2012, NeuroImage.

[48]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[49]  M. Lustig,et al.  Compressed Sensing MRI , 2008, IEEE Signal Processing Magazine.

[50]  Jean-Philippe Thiran,et al.  Structural connectomics in brain diseases , 2013, NeuroImage.

[51]  Samuel D. Gale,et al.  A Basal Ganglia Pathway Drives Selective Auditory Responses in Songbird Dopaminergic Neurons via Disinhibition , 2010, The Journal of Neuroscience.

[52]  Kuldeep Kumar,et al.  Brain Fiber Clustering Using Non-negative Kernelized Matching Pursuit , 2015, MLMI.

[53]  J. Thiran,et al.  Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. , 2006, Radiographics : a review publication of the Radiological Society of North America, Inc.

[54]  W. Eric L. Grimson,et al.  A unified framework for clustering and quantitative analysis of white matter fiber tracts , 2008, Medical Image Anal..

[55]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[57]  V. Wedeen,et al.  Generalized -Sampling Imaging , 2010 .

[58]  Matthew P. G. Allin,et al.  Atlasing location, asymmetry and inter-subject variability of white matter tracts in the human brain with MR diffusion tractography , 2011, NeuroImage.

[59]  K. Amunts,et al.  Individual variability is not noise , 2013, Trends in Cognitive Sciences.

[60]  Daniel Rueckert,et al.  Segmentation of MR images via discriminative dictionary learning and sparse coding: Application to hippocampus labeling , 2013, NeuroImage.

[61]  C. Westin,et al.  Automated white matter fiber tract identification in patients with brain tumors , 2016, NeuroImage: Clinical.

[62]  Damien A. Fair,et al.  Connectotyping: Model Based Fingerprinting of the Functional Connectome , 2014, PloS one.

[63]  Yong He,et al.  Sex- and brain size-related small-world structural cortical networks in young adults: a DTI tractography study. , 2011, Cerebral cortex.

[64]  Paul M. Thompson,et al.  Segmentation of High Angular Resolution Diffusion MRI Using Sparse Riemannian Manifold Clustering , 2014, IEEE Transactions on Medical Imaging.

[65]  K. Amunts,et al.  Brodmann's Areas 17 and 18 Brought into Stereotaxic Space—Where and How Variable? , 2000, NeuroImage.

[66]  Polina Golland,et al.  BrainPrint: A discriminative characterization of brain morphology , 2015, NeuroImage.

[67]  O. Sporns,et al.  From regions to connections and networks: new bridges between brain and behavior , 2016, Current Opinion in Neurobiology.

[68]  Jean-Francois Mangin,et al.  Automatic fiber bundle segmentation in massive tractography datasets using a multi-subject bundle atlas , 2012, NeuroImage.

[69]  I. Corouge,et al.  Analysis of brain white matter via fiber tract modeling , 2004, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[70]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[71]  P. Thompson,et al.  Diffusion imaging, white matter, and psychopathology. , 2011, Annual review of clinical psychology.

[72]  Abraham Z. Snyder,et al.  Function in the human connectome: Task-fMRI and individual differences in behavior , 2013, NeuroImage.

[73]  Alain Trouvé,et al.  A Statistical Model of White Matter Fiber Bundles Based on Currents , 2009, IPMI.

[74]  S. Holm A Simple Sequentially Rejective Multiple Test Procedure , 1979 .

[75]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[76]  P. Basser,et al.  In vivo fiber tractography using DT‐MRI data , 2000, Magnetic resonance in medicine.

[77]  Thomas R. Knösche,et al.  White matter integrity, fiber count, and other fallacies: The do's and don'ts of diffusion MRI , 2013, NeuroImage.

[78]  Christophe Lenglet,et al.  Automatic clustering and population analysis of white matter tracts using maximum density paths , 2014, NeuroImage.

[79]  E. Duchesnay,et al.  A framework to study the cortical folding patterns , 2004, NeuroImage.

[80]  Paul M. Thompson,et al.  Along-tract statistics allow for enhanced tractography analysis , 2012, NeuroImage.

[81]  Zhanpeng Jin,et al.  Brainprint: Assessing the uniqueness, collectability, and permanence of a novel method for ERP biometrics , 2015, Neurocomputing.

[82]  Paul M. Thompson,et al.  Genetics of the connectome , 2013, NeuroImage.

[83]  Paul M. Thompson,et al.  Genetics of white matter development: A DTI study of 705 twins and their siblings aged 12 to 29 , 2011, NeuroImage.

[84]  M. Fox,et al.  Individual Variability in Functional Connectivity Architecture of the Human Brain , 2013, Neuron.

[85]  Sallyanne Aarons Living with memory loss: A program for people with early stage dementia and their carers: A case study , 2003 .

[86]  J. Thiran,et al.  Fiber tracts of high angular resolution diffusion MRI are easily segmented with spectral clustering. , 2005 .

[87]  Carl-Fredrik Westin,et al.  Automatic Tractography Segmentation Using a High-Dimensional White Matter Atlas , 2007, IEEE Transactions on Medical Imaging.

[88]  A. Anderson,et al.  Classification and quantification of neuronal fiber pathways using diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[89]  Guillermo Sapiro,et al.  Sparse Representation for Computer Vision and Pattern Recognition , 2010, Proceedings of the IEEE.

[90]  W. Eric L. Grimson,et al.  Tractography Segmentation Using a Hierarchical Dirichlet Processes Mixture Model , 2009, IPMI.

[91]  Zhanpeng Jin,et al.  CEREBRE: A Novel Method for Very High Accuracy Event-Related Potential Biometric Identification , 2016, IEEE Transactions on Information Forensics and Security.

[92]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[93]  William M. Wells,et al.  How are siblings similar? How similar are siblings? Large-scale imaging genetics using local image features , 2016, 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI).