Self-calibrating quantum state tomography

We introduce and experimentally demonstrate a technique for performing quantum state tomography (QST) on multiple-qubit states despite incomplete knowledge about the unitary operations used to change the measurement basis. Given unitary operations with unknown rotation angles, our method can be used to reconstruct the density matrix of the state up to local rotations as well as recover the magnitude of the unknown rotation angle. We demonstrate high-fidelity self-calibrating tomography on polarization-encoded one- and two-photon states. The unknown unitary operations are realized in two ways: using a birefringent polymer sheet—an inexpensive smartphone screen protector—or alternatively a liquid crystal wave plate with a tuneable retardance. We explore how our technique may be adapted for QST of systems such as biological molecules where the magnitude and orientation of the transition dipole moment is not known with high accuracy.

[1]  Yu I Bogdanov,et al.  Statistical estimation of the efficiency of quantum state tomography protocols. , 2010, Physical review letters.

[2]  Yu. I. Bogdanov,et al.  Statistical estimation of the quality of quantum-tomography protocols , 2011, 1106.2056.

[3]  D. James,et al.  Qubit quantum state tomography , 2004 .

[4]  Andrew G. White,et al.  Measurement of qubits , 2001, quant-ph/0103121.

[5]  R. Hildner,et al.  Femtosecond coherence and quantum control of single molecules at room temperature , 2010, 1012.2366.

[6]  N. Gisin,et al.  Experimental methods for detecting entanglement. , 2005, Physical review letters.

[7]  M W Mitchell,et al.  Multiparticle state tomography: hidden differences. , 2007, Physical review letters.

[8]  M. Paris,et al.  Optimal estimation of entanglement in optical qubit systems , 2011, 1102.3684.

[9]  I. Walmsley,et al.  Optimal experiment design for quantum state tomography: Fair, precise, and minimal tomography , 2009, 0911.4310.

[10]  E. Knill,et al.  Diluted maximum-likelihood algorithm for quantum tomography , 2006, quant-ph/0611244.

[11]  M. W. Mitchell,et al.  Detecting Hidden Differences via Permutation Symmetries , 2007 .

[12]  Alán Aspuru-Guzik,et al.  Quantum process tomography of excitonic dimers from two-dimensional electronic spectroscopy. I. General theory and application to homodimers. , 2011, The Journal of chemical physics.

[13]  Alexei Gilchrist,et al.  Choice of measurement sets in qubit tomography , 2007, 0706.3756.

[14]  Masoud Mohseni,et al.  Quantum state and process tomography of energy transfer systems via ultrafast spectroscopy , 2010, Proceedings of the National Academy of Sciences.

[15]  Christopher Edward Kuklewicz,et al.  Ultrabright source of polarization-entangled photons from cavity-enhanced downconversion , 2005 .

[16]  C. F. Roos,et al.  Experimental quantum-information processing withC43a+ions , 2008, 0804.1261.

[17]  N. V. van Hulst,et al.  Electronic coherences and vibrational wave-packets in single molecules studied with femtosecond phase-controlled spectroscopy. , 2011, Physical chemistry chemical physics : PCCP.

[18]  G. Weihs,et al.  Coherence measures for heralded single-photon sources , 2008, 0807.1725.

[19]  C. Kurtsiefer,et al.  Experimental Polarization State Tomography using Optimal Polarimeters , 2006, quant-ph/0603126.

[20]  Y. S. Teo,et al.  Quantum-state reconstruction by maximizing likelihood and entropy. , 2011, Physical review letters.

[21]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[22]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[23]  M. Paris Quantum estimation for quantum technology , 2008, 0804.2981.

[24]  Aephraim M. Steinberg,et al.  Improving quantum state estimation with mutually unbiased bases. , 2008, Physical review letters.

[25]  Andrew M. Childs,et al.  Quantum algorithms for algebraic problems , 2008, 0812.0380.

[26]  Y. S. Teo,et al.  Incomplete quantum state estimation: A comprehensive study , 2012, 1202.1713.

[27]  Gilles Brassard,et al.  Quantum cryptography: Public key distribution and coin tossing , 2014, Theor. Comput. Sci..

[28]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[29]  G. Milburn,et al.  Linear optical quantum computing with photonic qubits , 2005, quant-ph/0512071.

[30]  Aephraim M. Steinberg,et al.  Experimental characterization of qutrits using symmetric informationally complete positive operator-valued measurements , 2011 .

[31]  E. Sudarshan,et al.  Robustness of raw quantum tomography , 2010, 1003.1664.

[32]  Gregory D. Scholes,et al.  Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature , 2010, Nature.

[33]  Koichi Yamagata,et al.  Efficiency of quantum state tomography for qubits , 2010, 1010.3813.

[34]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[35]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[36]  P. Guyot-Sionnest,et al.  Colloidal quantum dots , 2008 .