The chromatin-associated protein H-NS.

H-NS is a major component of chromatin in enteric bacteria. H-NS plays a structural role in organising the chromosome, and influences DNA rearrangements as well as the expression of many genes. The biochemical and functional characteristics of H-NS are distinct from those of 'typical' DNA-binding proteins and much remains to be learned about the mechanism(s) by which H-NS acts. In this article we review our current understanding of the role of H-NS, and describe possible models by which H-NS might influence DNA structure and gene expression.

[1]  T. Kawula,et al.  Rapid site-specific DNA inversion in Escherichia coli mutants lacking the histonelike protein H-NS , 1991, Journal of bacteriology.

[2]  Q. Liu,et al.  Gene 5.5 protein of bacteriophage T7 inhibits the nucleoid protein H-NS of Escherichia coli. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[3]  B. Uhlin,et al.  Antirepression function in Escherichia coli for the cAMP-cAMP receptor protein transcriptional activator. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[4]  M. Belfort,et al.  Nucleotide sequence of a newly-identified Escherichia coli gene, stpA, encoding an H-NS-like protein. , 1992, Nucleic acids research.

[5]  S. Mirkin,et al.  Formation of (dA-dT)n cruciforms in Escherichia coli cells under different environmental conditions , 1991, Journal of bacteriology.

[6]  C. Gualerzi,et al.  Identification of a cold shock transcriptional enhancer of the Escherichia coli gene encoding nucleoid protein H-NS. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Kano Yasunobu,et al.  Histone-like proteins are required for cell growth and constraint of supercoils in DNA. , 1992 .

[8]  L. Bracco,et al.  Synthetic curved DNA sequences can act as transcriptional activators in Escherichia coli. , 1989, The EMBO journal.

[9]  Annick Spassky,et al.  H1a, an E. coli DNA-binding protein which accumulates in stationary phase, strongly compacts DNA in vitro , 1984, Nucleic Acids Res..

[10]  H. Buc,et al.  Physico-chemical properties of a DNA binding protein: Escherichia coli factor H1. , 1977, European journal of biochemistry.

[11]  C. Higgins,et al.  A novel, non‐invasive promoter probe vector: cloning of the osmoregulated proU promoter of Escherichia coli K12 , 1989, Molecular microbiology.

[12]  Ian R. Booth,et al.  A physiological role for DNA supercoiling in the osmotic regulation of gene expression in S. typhimurium and E. coli , 1988, Cell.

[13]  J. Cairney,et al.  Osmotic regulation of transcription: induction of the proU betaine transport gene is dependent on accumulation of intracellular potassium , 1986, Journal of bacteriology.

[14]  K. Drlica,et al.  Control of bacterial DNA supercoiling , 1992, Molecular microbiology.

[15]  C. Gualerzi,et al.  Proteins from the prokaryotic nucleoid: biochemical and 1H NMR studies on three bacterial histone-like proteins. , 1984, Advances in experimental medicine and biology.

[16]  C. Gualerzi,et al.  Proteins from the prokaryotic nucleoid Interaction of nucleic acids with the 15 kDa Escherichia coli histone‐like protein H‐NS , 1988, FEBS letters.

[17]  B. Uhlin,et al.  The positive regulator CfaD overcomes the repression mediated by histone‐like protein H‐NS (H1) in the CFA/I fimbrial operon of Escherichia coli. , 1992, The EMBO journal.

[18]  M. Jacquet,et al.  Two heat-resistant, low molecular weight proteins from Escherichia coli that stimulate DNA-directed RNA synthesis. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. Foster,et al.  The influence of DNA topology on the environmental regulation of a pH‐regulated locus in Salmonella typhimurium , 1993, Molecular microbiology.

[20]  C. Higgins,et al.  DNA supercoiling and the anaerobic and growth phase regulation of tonB gene expression , 1988, Journal of bacteriology.

[21]  H. Buc,et al.  A transcriptionally active plasmid-protein complex isolated from Escherichia coli. , 1982, Biochimica et biophysica acta.

[22]  Characterization of the structural genes for the DNA‐binding protein H‐NS in Enterobacteriaceae , 1989, FEBS letters.

[23]  T. Mizuno,et al.  An Escherichia coli protein that preferentially binds to sharply curved DNA. , 1990, Journal of biochemistry.

[24]  W. Gaastra,et al.  Regions of the CFA/I promoter involved in the activation by the transcriptional activator CfaD and repression by the histone-like protein H-NS. , 1994, Biochimie.

[25]  Roberto Spurio,et al.  Expression of the gene encoding the major bacterial nucleoid protein H‐NS is subject to transcriptional auto‐repression , 1993, Molecular microbiology.

[26]  C. Gualerzi,et al.  Mutations altering chromosomal protein H-NS induce mini-Mu transposition. , 1991, The New biologist.

[27]  A. Maurelli,et al.  Temperature regulation of Shigella virulence: identification of the repressor gene virR, an analogue of hns, and partial complementation by tyrosyl transfer RNA (tRNA1Tyr) , 1992, Molecular microbiology.

[28]  E. Bremer,et al.  Synthesis of the Escherichia coli K‐12 nucleoid‐associated DNA‐binding protein H‐NS is subjected to growth‐phase control and autoregulation , 1993, Molecular microbiology.

[29]  G. Bennett,et al.  Modulation of acid-induced amino acid decarboxylase gene expression by hns in Escherichia coli , 1993, Journal of bacteriology.

[30]  C. Dorman,et al.  Identification of two new genetically active regions associated with the osmZ locus of Escherichia coli: role in regulation of proU expression and mutagenic effect of cya, the structural gene for adenylate cyclase , 1992, Journal of bacteriology.

[31]  M. Jacquet,et al.  A thermostable protein factor acting on in vitro DNA transcription. , 1971, Biochemical and biophysical research communications.

[32]  C. Higgins,et al.  DNA supercoiling and environmental regulation of virulence gene expression in Shigella flexneri , 1990, Nature.

[33]  S. Schultz,et al.  Cation Transport in Escherichia coli , 1965, The Journal of general physiology.

[34]  H. Buc,et al.  Modulated expression of promoters containing upstream curved DNA sequences by the Escherichia coli nucleoid protein H‐NS , 1994, Molecular microbiology.

[35]  T. Kawula,et al.  Mutations in a gene encoding a new Hsp70 suppress rapid DNA inversion and bgl activation, but not proU derepression, in hns-1 mutant Escherichia coli , 1994, Journal of bacteriology.

[36]  D. Lilley,et al.  Superhelical torsion in cellular DNA responds directly to environmental and genetic factors. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[37]  B. Roques,et al.  Removal of DNA curving by DNA ligands: gel electrophoresis study. , 1991, Biochemistry.

[38]  C. Higgins,et al.  Histone-like protein H1 (H-NS), DNA supercoiling, and gene expression in bacteria , 1990, Cell.

[39]  C. Sasakawa,et al.  Transcriptional control of the invasion regulatory gene virB of Shigella flexneri: activation by virF and repression by H-NS , 1993, Journal of bacteriology.

[40]  A. Ishihama,et al.  Identification and sequence determination of the host factor gene for bacteriophage Q beta. , 1991, Nucleic acids research.

[41]  C. Gualerzi,et al.  Proteins from the Prokaryotic Nucleoid. Structural and Functional Characterization of the Escherichia coli DNA-Binding Proteins NS (HU) and H-NS , 1986 .

[42]  M. Winkler,et al.  Characterization of broadly pleiotropic phenotypes caused by an hfq insertion mutation in Escherichia coli K‐12 , 1994, Molecular microbiology.

[43]  S. Nedospasov,et al.  Histone-like proteins in the purified Escherichia coli deoxyribonucleoprotein. , 1977, Nucleic acids research.

[44]  K. Drlica,et al.  Histonelike proteins of bacteria. , 1987, Microbiological reviews.

[45]  A. Danchin,et al.  Mutations in bglY, the structural gene for the DNA-binding protein H1, affect expression of several Escherichia coli genes. , 1990, Biochimie.

[46]  D. Pettijohn,et al.  Interaction of the Escherichia coli HU protein with DNA. Evidence for formation of nucleosome-like structures with altered DNA helical pitch. , 1986, Journal of molecular biology.

[47]  Unzipping the secrets of coiled-coils , 1992, Current Biology.

[48]  C. Higgins,et al.  Expression and mutational analysis of the nucleoid‐associated protein H‐NS of Salmonella typhimurium , 1992, Molecular microbiology.

[49]  D. Ussery,et al.  The chromatin‐associated protein H‐NS alters DNA topology in vitro. , 1994, The EMBO journal.

[50]  T. Mizuno,et al.  The Escherichia coli nucleoid protein H‐NS functions directly as a transcriptional repressor. , 1993, The EMBO journal.

[51]  C. Higgins,et al.  The chromatin-associated protein H-NS interacts with curved DNA to influence DNA topology and gene expression , 1992, Cell.

[52]  A. Danchin,et al.  Mutations in the bglY gene increase the frequency of spontaneous deletions in Escherichia coli K-12. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[53]  Peter Nilsson,et al.  Transcriptional silencing and thermoregulation of gene expression in Escherichia coli , 1990, Nature.

[54]  R. Wagner,et al.  Evidence for a regulatory function of the histone‐like Escherichia coli protein H‐NS in ribosomal RNA synthesis , 1994, Molecular microbiology.

[55]  L. Hsieh,et al.  Bacterial DNA supercoiling and [ATP]/[ADP] ratio: changes associated with salt shock , 1991, Journal of bacteriology.

[56]  C. Higgins,et al.  Osmotic regulation of porin expression: a role for DNA supercoiling , 1989, Molecular microbiology.

[57]  W. Gaastra,et al.  Expression of CFA/I fimbriae is positively regulated. , 1990, Microbial pathogenesis.

[58]  C. Gualerzi,et al.  Escherichia coli DNA-binding protein H-NS is localized in the nucleoid. , 1991, Research in microbiology.

[59]  C. Pon,et al.  Proteins from the prokaryotic nucleoid: primary and quaternary structure of the 15‐kD Escherichia coli DNA binding protein H‐NS , 1988, Molecular microbiology.

[60]  P. Sansonetti,et al.  Identification of a chromosomal gene controlling temperature-regulated expression of Shigella virulence. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[61]  J. Wang,et al.  Supercoiling of the DNA template during transcription. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Gralla,et al.  Changes in the linking number of supercoiled DNA accompany growth transitions in Escherichia coli , 1987, Journal of bacteriology.

[63]  H. Buc,et al.  Isolation of plasmid-protein complexes from Escherichia coli. , 1979, European journal of biochemistry.

[64]  T. Mizuno,et al.  Expression of the Escherichia coli dimorphic glutamic acid decarboxylases is regulated by the nucleoid protein H-NS. , 1993, Bioscience, biotechnology, and biochemistry.

[65]  S. Normark,et al.  The RpoS Sigma factor relieves H‐NS‐mediated transcriptional repression of csgA, the subunit gene of fibronectin‐binding curli in Escherichia coli , 1993, Molecular microbiology.

[66]  Edward N. Trifonov,et al.  CURVATURE: software for the analysis of curved DNA , 1993, Comput. Appl. Biosci..

[67]  A. Holck,et al.  Affinity of protein HU for different nucleic acids , 1985, FEBS letters.

[68]  M. Bösl Genetic map of the tyrT region of Escherichia coli from 27.1 to 27.7 minutes based exclusively on sequence data , 1993, Journal of bacteriology.

[69]  S. Makino,et al.  Molecular cloning and characterization of chromosomal virulence region kcpA of Shigella flexneri , 1989, Molecular microbiology.

[70]  R E Harrington,et al.  Curved DNA without A-A: experimental estimation of all 16 DNA wedge angles. , 1991, Proceedings of the National Academy of Sciences of the United States of America.