A q-enumeration of convex polyominoes by the festoon approach
暂无分享,去创建一个
[1] M. Bousquet-Mélou,et al. Convex polyominoes and algebraic languages , 1992 .
[2] W. J. Thron,et al. Encyclopedia of Mathematics and its Applications. , 1982 .
[3] Mireille Bousquet-Mélou,et al. q -enumeration of convex polyominoes , 1993 .
[4] I. Goulden,et al. Combinatorial Enumeration , 2004 .
[5] Mireille Bousquet-Mélou,et al. Empilements de segments et q-énumération de polyominos convexes dirigés , 1992, J. Comb. Theory, Ser. A.
[6] Mireille Bousquet-Mélou,et al. The generating function of convex polyominoes: The resolution of a q-differential system , 1995, Discret. Math..
[7] Emil Grosswald,et al. The Theory of Partitions , 1984 .
[8] Mireille Bousquet-Mélou,et al. Stacking of segments and q -enumeration of convex directed polyominoes , 1992 .
[9] Svjetlan Feretic,et al. An alternative method for q-counting directed column-convex polyominoes , 2000, Discret. Math..
[10] Ira M. Gessel,et al. A noncommutative generalization and $q$-analog of the Lagrange inversion formula , 1980 .
[11] K. Lin,et al. EXACT SOLUTION OF THE CONVEX POLYGON PERIMETER AND AREA GENERATING FUNCTION , 1991 .
[12] George Polya,et al. On the number of certain lattice polygons , 1969 .