Interleukin-22 signaling attenuates necrotizing enterocolitis by promoting epithelial cell regeneration

[1]  T. Chu,et al.  Global hypermethylation of intestinal epithelial cells is a hallmark feature of neonatal surgical necrotizing enterocolitis , 2020, Clinical epigenetics.

[2]  J. Faith,et al.  Interleukin 22 disrupts pancreatic function in newborn mice expressing IL-23 , 2019, Nature Communications.

[3]  J. Alcorn,et al.  Interleukin-22 (IL-22) Binding Protein Constrains IL-22 Activity, Host Defense, and Oxidative Phosphorylation Genes during Pneumococcal Pneumonia , 2019, Infection and Immunity.

[4]  M. Ohmuraya,et al.  Necroptosis of Intestinal Epithelial Cells Induces Type 3 Innate Lymphoid Cell-Dependent Lethal Ileitis , 2019, iScience.

[5]  R. V. van Lingen,et al.  The Preterm Gut Microbiota: An Inconspicuous Challenge in Nutritional Neonatal Care , 2019, Front. Cell. Infect. Microbiol..

[6]  Naomi M. Sonnek,et al.  L-WRN conditioned medium for gastrointestinal epithelial stem cell culture shows replicable batch-to-batch activity levels across multiple research teams , 2019, Stem cell research.

[7]  M. Good,et al.  Impact of Toll-Like Receptor 4 Signaling in Necrotizing Enterocolitis: The State of the Science. , 2019, Clinics in perinatology.

[8]  Yun S. Song,et al.  Necrotizing enterocolitis is preceded by increased gut bacterial replication, Klebsiella, and fimbriae-encoding bacteria , 2019, Science Advances.

[9]  W. Mohn,et al.  IL-22 Preserves Gut Epithelial Integrity and Promotes Disease Remission during Chronic Salmonella Infection , 2019, The Journal of Immunology.

[10]  S. Crosby,et al.  A multi-amplicon 16S rRNA sequencing and analysis method for improved taxonomic profiling of bacterial communities. , 2018, Journal of microbiological methods.

[11]  Pei-Yun Tsai,et al.  Interleukin 22 Expands Transit-Amplifying Cells While Depleting Lgr5+ Stem Cells via Inhibition of Wnt and Notch Signaling , 2018, Cellular and molecular gastroenterology and hepatology.

[12]  J. Starmer,et al.  IL22 Inhibits Epithelial Stem Cell Expansion in an Ileal Organoid Model , 2018, Cellular and molecular gastroenterology and hepatology.

[13]  C. Hunter,et al.  The science and necessity of using animal models in the study of necrotizing enterocolitis. , 2018, Seminars in pediatric surgery.

[14]  E. Jensen,et al.  Transitory presence of myeloid-derived suppressor cells in neonates is critical for control of inflammation , 2017, Nature Medicine.

[15]  R. Locksley,et al.  The Development of Steady-State Activation Hubs between Adult LTi ILC3s and Primed Macrophages in Small Intestine , 2017, The Journal of Immunology.

[16]  B. Warner,et al.  The Microbiome and Biomarkers for Necrotizing Enterocolitis: Are We Any Closer to Prediction? , 2017, The Journal of pediatrics.

[17]  J. Neu,et al.  Intestinal dysbiosis in preterm infants preceding necrotizing enterocolitis: a systematic review and meta-analysis , 2017, Microbiome.

[18]  H. Deshmukh,et al.  Intestinal commensal bacteria mediate lung mucosal immunity and promote resistance of newborn mice to infection , 2017, Science Translational Medicine.

[19]  J. Ozolek,et al.  The human milk oligosaccharide 2′-fucosyllactose attenuates the severity of experimental necrotising enterocolitis by enhancing mesenteric perfusion in the neonatal intestine , 2016, British Journal of Nutrition.

[20]  G. Weinstock,et al.  Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective case-control study , 2016, The Lancet.

[21]  Ajay S. Gulati,et al.  Intestinal Interleukin-17 Receptor Signaling Mediates Reciprocal Control of the Gut Microbiota and Autoimmune Inflammation. , 2016, Immunity.

[22]  J. Kolls,et al.  Interleukin-22 Signaling in the Regulation of Intestinal Health and Disease , 2016, Front. Cell Dev. Biol..

[23]  J. Kolls,et al.  Therapeutic Role of Interleukin 22 in Experimental Intra-abdominal Klebsiella pneumoniae Infection in Mice , 2016, Infection and Immunity.

[24]  R. Jenq,et al.  Interleukin-22 Promotes Intestinal Stem Cell-Mediated Epithelial Regeneration , 2015, Nature.

[25]  L. Boon,et al.  Type 3 innate lymphoid cells maintain intestinal epithelial stem cells after tissue damage , 2015, The Journal of experimental medicine.

[26]  M. Hornef,et al.  Active suppression of intestinal CD4+TCRαβ+ T-lymphocyte maturation during the postnatal period , 2015, Nature Communications.

[27]  P. Denning,et al.  Intestinal microbiota and its relationship with necrotizing enterocolitis , 2015, Pediatric Research.

[28]  Jacqueline A. Keane,et al.  Epithelial IL-22RA1-Mediated Fucosylation Promotes Intestinal Colonization Resistance to an Opportunistic Pathogen , 2014, Cell host & microbe.

[29]  B. Becher,et al.  Innate lymphoid cells regulate intestinal epithelial cell glycosylation , 2014, Science.

[30]  Rustem F. Ismagilov,et al.  Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness , 2014, Nature.

[31]  K. Bibby,et al.  Lactobacillus rhamnosus HN001 decreases the severity of necrotizing enterocolitis in neonatal mice and preterm piglets: evidence in mice for a role of TLR9. , 2014, American journal of physiology. Gastrointestinal and liver physiology.

[32]  Tony T. Jiang,et al.  Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection , 2013, Nature.

[33]  E. Elinav,et al.  IL-22 Deficiency Alters Colonic Microbiota To Be Transmissible and Colitogenic , 2013, The Journal of Immunology.

[34]  R. Jenq,et al.  Interleukin-22 protects intestinal stem cells from immune-mediated tissue damage and regulates sensitivity to graft versus host disease. , 2012, Immunity.

[35]  F. Bushman,et al.  Innate Lymphoid Cells Promote Anatomical Containment of Lymphoid-Resident Commensal Bacteria , 2012, Science.

[36]  R. Ley,et al.  The Antibacterial Lectin RegIIIγ Promotes the Spatial Segregation of Microbiota and Host in the Intestine , 2011, Science.

[37]  J. Ozolek,et al.  Reciprocal Expression and Signaling of TLR4 and TLR9 in the Pathogenesis and Treatment of Necrotizing Enterocolitis1 , 2009, The Journal of Immunology.

[38]  Shinichiro Sawa,et al.  Microbial flora drives interleukin 22 production in intestinal NKp46+ cells that provide innate mucosal immune defense. , 2008, Immunity.

[39]  S. Sa,et al.  Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens , 2008, Nature Medicine.

[40]  M. Fei,et al.  IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia , 2008, Nature Medicine.

[41]  Hans Clevers,et al.  Primary mouse small intestinal epithelial cell cultures. , 2013, Methods in molecular biology.

[42]  J. Neu,et al.  Necrotizing enterocolitis. , 2011, The New England journal of medicine.

[43]  Andreas Diefenbach,et al.  RORγt and commensal microflora are required for the differentiation of mucosal interleukin 22–producing NKp46+ cells , 2009, Nature Immunology.

[44]  E. Widdowson EFFECTS OF PREMATURITY AND DYSMATURITY IN ANIMALS , 1968 .