Contraction and Treewidth Lower Bounds

Edge contraction is shown to be a useful mechanism to improve lower bound heuristics for treewidth. A successful lower bound for treewidth is the degeneracy: the maximum over all subgraphs of the minimum degree. The degeneracy is polynomial time computable. We introduce the notion of contraction degeneracy: the maximum over all graphs that can be obtained by contracting edges of the minimum degree. We show that the problem to compute the contraction degeneracy is NP-hard, but for fixed k, it is polynomial time decidable if a given graph G has contraction degeneracy at least k. Heuristics for computing the contraction degeneracy are proposed and experimentally evaluated. It is shown that these can lead to considerable improvements to the lower bound for treewidth. A similar study is made for the combination of contraction with Lucena’s lower bound based on Maximum Cardinality Search [12] .

[1]  Arie M. C. A. Koster,et al.  Safe Seperators for Treewidth , 2004, ALENEX/ANALC.

[2]  Arie M. C. A. Koster,et al.  Degree-Based Treewidth Lower Bounds , 2005, WEA.

[3]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[4]  Arie M. C. A. Koster,et al.  Solving partial constraint satisfaction problems with tree decomposition , 2002, Networks.

[5]  Thomas Wolle,et al.  Contraction Degeneracy on Cographs , 2004 .

[6]  Alexander Grigoriev,et al.  Treewidth Lower Bounds with Brambles , 2005, ESA.

[7]  Dan Geiger,et al.  A Practical Algorithm for Finding Optimal Triangulations , 1997, AAAI/IAAI.

[8]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[9]  Linda C. van der Gaag,et al.  Pre-processing for Triangulation of Probabilistic Networks , 2001, UAI.

[10]  Hans L. Bodlaender,et al.  Necessary Edges in k-Chordalisations of Graphs , 2003, J. Comb. Optim..

[11]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[12]  Hans L. Bodlaender,et al.  A Partial k-Arboretum of Graphs with Bounded Treewidth , 1998, Theor. Comput. Sci..

[13]  Bruno Courcelle,et al.  The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs , 1990, Inf. Comput..

[14]  Arie M. C. A. Koster,et al.  Safe Reduction Rules for Weighted Treewidth , 2002, Algorithmica.

[16]  Siddharthan Ramachandramurthi,et al.  A Lower Bound for Treewidth and Its Consequences , 1994, WG.

[17]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[18]  Jacques Carlier,et al.  New Lower and Upper Bounds for Graph Treewidth , 2003, WEA.

[19]  H. Bodlaender,et al.  A Note on Edge Contraction , 2004 .

[20]  S. Geman,et al.  Dynamic programming, tree-width and computation on graphical models , 2002 .

[21]  Jacques Carlier,et al.  Heuristic and metaheuristic methods for computing graph treewidth , 2004, RAIRO Oper. Res..

[22]  S. Arnborg,et al.  Characterization and recognition of partial 3-trees , 1986 .

[23]  Arie M. C. A. Koster,et al.  On the maximum cardinality search lower bound for treewidth , 2004, Discret. Appl. Math..

[24]  Paul D. Seymour,et al.  Tour Merging via Branch-Decomposition , 2003, INFORMS J. Comput..

[25]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[26]  Paul D. Seymour,et al.  Graph Minors. XX. Wagner's conjecture , 2004, J. Comb. Theory B.

[27]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[28]  Derek G. Corneil,et al.  Complexity of finding embeddings in a k -tree , 1987 .

[29]  Siddharthan Ramachandramurthi,et al.  The Structure and Number of Obstructions to Treewidth , 1997, SIAM J. Discret. Math..

[30]  Vibhav Gogate,et al.  A Complete Anytime Algorithm for Treewidth , 2004, UAI.

[31]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[32]  David J. Spiegelhalter,et al.  Local computations with probabilities on graphical structures and their application to expert systems , 1990 .

[33]  Arie M. C. A. Koster,et al.  Treewidth: Computational Experiments , 2001, Electron. Notes Discret. Math..

[34]  Arie M. C. A. Koster,et al.  Safe separators for treewidth , 2006, Discret. Math..

[35]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[36]  Hans L. Bodlaender A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC '93.

[37]  Arie M. C. A. Koster,et al.  Frequency assignment : models and algorithms , 1999 .

[38]  Paul D. Seymour,et al.  Graph Minors: XV. Giant Steps , 1996, J. Comb. Theory, Ser. B.

[39]  Brian Lucena,et al.  A New Lower Bound for Tree-Width Using Maximum Cardinality Search , 2003, SIAM J. Discret. Math..