Control of rRNA synthesis in Escherichia coli at increased rrn gene dosage. Role of guanosine tetraphosphate and ribosome feedback.
暂无分享,去创建一个
The effects of extra, plasmid-borne rRNA genes on the synthesis rate of rRNA in Escherichia coli were examined by measuring the fraction of total RNA synthesis that is rRNA and tRNA (rs/rt), the cytoplasmic concentration of guanosine tetraphosphate (ppGpp), and the absolute rates of RNA and protein synthesis. Experiments were carried out in different growth media and with two different strains of E. coli, B/r and K-12. The results indicated: 1) increased rrn gene dosage from either intact or defective rrn genes reduced bacterial growth rates and ribosome activity (protein synthesis rate/average ribosome), and increased rs/rt. 2) Extra intact, but not extra defective, plasmid-borne rrn genes caused the level of ppGpp to be increased in comparison to the pBR322-carrying control strain. 3) As a function of ppGpp, rs/rt was increased with either intact or defective rrn genes. 4) The rRNA synthesis rate/rrn gene was reduced in the presence of extra rrn genes; this reduction in gene activity was greater with intact than with defective rrn genes. An analysis of these results showed that they are consistent with the ppGpp hypothesis of rRNA control but not with a feedback effector role of translating ribosomes.